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A novel evolutionary extreme learning machine (ELM) based on improved quantum-behaved particle swarm optimization (IQPSO)
for radar target classification is presented in this paper. Quantum-behaved particle swarm optimization (QPSO) has been used in
ELM to solve the problem that ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the
random set of input weights and hidden biases. But the method for calculating the characteristic length of Delta potential well
of QPSO may reduce the global search ability of the algorithm. To solve this issue, a new method to calculate the characteristic
length of Delta potential well is proposed in this paper. Experimental results based on the benchmark functions validate the better
performance of IQPSO against QPSO in most cases. The novel algorithm is also evaluated by using real-world datasets and radar
data; the experimental results indicate that the proposed algorithm is more effective than BP, SVM, ELM, QPSO-ELM, and so on,

in terms of real-time performance and accuracy.

1. Introduction

Radar target classification technology is of great significance
in both military and civil aspects [1, 2]. At present, the
commonly used classification methods include Bayesian [3],
Dempster-Shafer (D-S) theory [4], decision tree [5], support
vector machine (SVM) [6], and back propagation (BP) neural
network [7]. Although these methods can obtain good classi-
fication accuracy, their common problem is that the real-time
performance is not high. ELM [8], as a new learning algo-
rithm for single-hidden-layer feedforward neural networks
(SLENs), has attracted great concerns from various fields
for its fast learning speed, such as traffic sign recognition
[9], face recognition [10], human action recognition [11],
and image analysis [12]. The idea of the algorithm is to
generate the input weights and hidden biases randomly and
then train the network by solving the norm least-squares
solution of the output weights [13]. ELM not only has faster
learning speed than traditional learning methods, but also
has good generalization performance in many applications
[14]. In order to further improve the ELM algorithm, the

researchers put forward many improved algorithms. The fully
complex ELM (C-ELM) is proposed in [15], which extends
the ELM algorithm from the real domain to the complex
domain. Considering that when new data is received, many
training methods use the past data together with the new
data and perform a retraining, which consumes lots of time,
an online sequential ELM (OS-ELM) is proposed in [16],
which can learn the training data one by one or chunk by
chunk and discard the data for which the training has already
been done. To get the better predicting performance, a new
adaptive ensemble model of ELM (Ada-ELM) is proposed in
[17], which can adjust the ensemble weights automatically.
Considering that the performance of ELM is affected by
hidden layer nodes and the number of hidden layer nodes
is difficult to determine, the incremental ELM (I_ELM) [18],
pruned ELM (P_ELM) [19], and self-adaptive ELM (SaELM)
[20] have been proposed. Note that traditional ELM only
utilizes labeled data to carry out the supervised learning task;
[21] applied manifold regularization (MR) to ELM to exploit
unlabeled data in the ELM model. Moreover, [22] proposed
sparse Bayesian ELM (SBELM) which has the advantages of
the two algorithms.
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However, due to the random selection of input weights
and hidden biases, ELM tends to need a large number of
hidden nodes for better generalization, which may increase
the complexity of the network. In order to solve this prob-
lem, an improved ELM method based on particle swarm
optimization (PSO) is proposed in [23]. This method can
resolve the drawbacks of ELM. But, at the same time, we also
know that PSO easily has premature convergence and has low
robustness due to the fact that its global search ability relies
on the up-limit of velocity [24]. To discourage premature
convergence, [25] proposed comprehensive learning particle
swarm optimizer (CLPSO), which utilized all other particles’
historical best information to update a particle’s velocity. In
[26], Sun et al. introduce quantum theory into PSO and
put forward a quantum-behaved PSO (QPSO) algorithm,
which outperforms PSO in search ability and has fewer
parameters to control. QPSO and its improved model have
been applied in many ways [27, 28]. The enhanced weighted
quantum PSO (EWQPSO) has been developed to perform
the design of the supershaped lens antennas yielding optimal
antenna performance [27] and the random local optimized
QPSO (RLQPSO) has been used in fast threshold image
segmentation [28]. In [29-31], QPSO was applied to ELM
to improve the algorithm performance. However, as with
other evolutionary algorithms, QPSO also has the problem
of premature convergence [32]. References [33, 34] proposed
QPSO with random mean best position and weighted mean
best position, respectively. Reference [35] introduced a novel
search strategy with a selection operation into QPSO. In
the modified QPSO (MQPSO), the global best position is
substituted by a personal best position of a randomly selected
particle. Although QPSO algorithm has better global con-
vergence than PSO, this method calculates the characteristic
length of Delta potential well only according to the mean
best position, which will reduce the global search ability of
the algorithm. In order to overcome this problem, this paper
presents a new method to calculate the characteristic length
of Delta potential well. Then the improved QPSO (IQPSO)
algorithm is used to optimize the weights and biases of ELM.

The rest of this paper is organized as follows: Section 2
introduces the relevant theoretical knowledge of ELM and
QPSO. In Section 3, we present the improved formula for
calculating the characteristic length of Delta potential well of
QPSO and the application of IQPSO in parameter optimiza-
tion of ELM. Experimental results are analyzed in Section 4,
and Section 5 summarizes the paper.

2. Related Work

2.1. Extreme Learning Machine. Given a set of N training
datasets (x;, ;), where i = 1,2,...,N, x; = [x;,X;,...,
xin]T € R" and y;, = [yil,yiz,...,yim]T € R™, x; is an n-
dimensional input vector and y; is the expected output. The
output function of ELM with L hidden nodes is represented
as follows:

L

YBg(wi-x;+b)=0; j=12...N, )

i=1

where w; = [w;),wy,...,w;,]" € R"is the weight vector
of input nodes to hidden nodes and b, is the bias of ith
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hidden node, 8; = [B4,Bi>--->Bim] € R™ is the weight
vector between hidden nodes and the output nodes, g(x) is
the activation function of hidden layer, and o; is the output
vector.

If the SLFNs with L hidden nodes can approximate the N
samples with zero error, we know that (1) can be converted to
the following formula:

L
Zﬁig (w; - %, +b) =y,
i=1

2)
L
Zﬁig (w; - xn +b) = yn-
i=1
The above equations can be written as
HB =Y, (3)
where
H(wy,...,wp,by,.... b, %, . xy)
gw - x +b) -+ g(w,-x +by)
4)
g(w, - xy+by) - g(w,-xy+by) NxL
3
ﬁ = >
—ﬁ{ Lxm
- (5)
N
Y =
-yll\; Nxm

So training the SLFNs corresponds to finding the norm
least-squares solution f3, which can be shown as follows:

B=HYY, (6)

where H" is the Moore-Penrose generalized inverse of hidden
layer output matrix H.
Then, according to KKT theorem, (6) can be expressed as

I -1
(X + HTH> H'Y, N>,

B= 7)

I 1
HT<X +HHT> Y, N<L,
where I is the unit matrix and A is the regularization
coeflicient.

Thus, the learning steps of the ELM can be summarized
as follows.

Step 1. Determine the structure of neural networks and set
random values to the input weights w; and the hidden layer
biases b,.
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Step 2. Calculate the hidden layer output matrix H according
to (4).

Step 3. Calculate the output weight vector 8 according to (6).

2.2. Quantum-Behaved Particle Swarm Optimization. Given
the particle swarm S = {s,s,,...,s,,} where M represents
the swarm size, D denotes the dimension of the search
space. At each iteration, the position of the ith particle
can be expressed as s;(t) = [s;(t),s;,(t),...,s;p(t)]. The
personal best position can be expressed as s (f) =
(S pest, (s Sppest, (D> - - > Sppest, (D] (i = 1,2,..., M) and the
global best position can be expressed as $ 01y = [Sgpest, (£)>
Sgbest, (D> - - > Sgpest, (£)]. The personal best position and the
global best position are updated using the following formula:

{si ®  FS5®) < f (Sphes, )
Spbesti (t + 1) =
pbest (t) f(S (t)) f(spbesti (t))’ ®)
8
{si () 5 (1)) < f (Sgbest (1)) 5
Sgbest (t+1) =
gbest (t) f (t) = f( gbest (t)) >

where f(x) is the fitness function.

In [30], it can be seen that the position of the particle can
be updated by using (9)

Li; (t) 1
; w, 0] ©)

s;;(E+1)=p;;(8) £

« |mbestj (t) — max (s,-’j ), Sk,j (t))| ,

Li;(t)=q« |Si,j (t) = s (t)| )

faver > max (f (Si (t)) ’f
min (f (s; (1)), f (sx (1)) < faver < max(f (s;®)), f (s ®)),  (12)

Pij(t) = ;5 (1) - Sppesr, (1) + (1-9,;0)
(10)

' Sgbestj (),

where u and ¢; j(t) are two random numbers uniformly
distributed in the interval (0,1) and L; j (t) is the characteristic
length of Delta potential well, and its value is directly related
to the convergence speed and search ability of the algorithm.
In the traditional QPSO, L; (t) is determined by

L;;(t) =2« |mbestj () —s;; (t)| , (11)

where mbest is the mean best position of the swarm
and mbest (1) = > spbesti,j(t)/M. « is the contraction-
expansion coeflicient, which can be adjusted to control the
convergence speed of the algorithm. There are two ways to
set «: fixed parameter and linear reduction. If the linear
reduction method is adopted, then « = 1-0.5%x¢/T,, ., where
T . is the maximum number of iterations and ¢ is the current
number of iterations.

3. Proposed Approach

3.1. Improved Quantum-Behaved Particle Swarm Optimiza-
tion. The method of (11) has the following problems: since
mbest is a relatively stable value, the search information of
the whole swarm cannot be effectively utilized. Especially
when most particles fall into local optima, only a few particles
are distributed in other regions; the mbest will also tend to
the local optimum. As a result, most particles only perform
local search. This will reduce the global search ability of the
algorithm. To overcome this problem, this paper presents a
new method to calculate L; j(t).

(s 1)),

o |mbestj (t) — min (s,-’j (t), sy (t))' v faver <min (£ (s; (1), f (s, (1)),

where s; ;(¢) is the randomly selected particle in the swarm
and k # i, f,,., is the average fitness of the swarm, and f,,., =
Yt f(s@)/M.

Compared with (11), (12) takes into account the particles
distributed in other regions. It can be seen from (12) that
even if most particles fall into local optima, the particles still
have moderate probability of jumping out of local optima due
to the particles distributed in other regions. The improved
method is able to improve the global search ability of QPSO.

The flow chart of IQPSO is shown in Figure 1.

3.2. ELM Based on IQPSO Algorithm. We know from
Section 2 that ELM has the advantages of fast learning speed
and easy implementation. However, ELM tends to require
a large number of hidden nodes to get better performance,
which complicates the network structure. In addition, the
hidden layer output weights are determined by the random

input weights and biases; as a result, the final output may be
instable. This paper proposed IQPSO-ELM algorithm to solve
the shortcoming of ELM.

The IQPSO-ELM can be divided into three parts: initial
ELM, trained ELM, and test ELM as shown in Figure 2. Each
part of the algorithm is summarized as follows.

(1) Initial ELM: we first obtain training samples, valida-
tion samples, and test samples. Then set the number
of input nodes of ELM equal to the dimension of input
data and set the number of output nodes equal to the
number of sample classes. Of course, we also need to
set hidden layer nodes, as well as the swarm size and
the maximum number of iterations

(2) Trained ELM: in this process, appropriate input

weights and hidden layer biases are obtained by
IQPSO to train ELM. First, the particle dimension D
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TABLE 1: Benchmark functions.
Function expression Range Function optimal value
Sphere fix) = fo [-100, 100] 0
m— 1 2 )
Rosenbrock Z 100 (x;,, - 2) + (x; - 1) ) [-30,30] 0
i=1
1 c I
Ackley f5 (x) = 20 exp ( 0.2 —Zx > — exp (—Z cos Zﬂxi> +20+e [-32,32] 0
nzzl nizl
n
Rastrigin fi(x) =[x} = 10 cos (27x;) + 10] [-5.12,5.12] 0
i=1

Start

Initialize particle position

Calculate the particle fitness and initialize the personal
best position and the global best position

Calculate the mean best position of the swarm and the
contraction-expansion coefficient

Update particle position

Calculate the particle fitness and update the
personal best position and the global best position

No

t> Thax

Yes

Output optimal solution and
end of algorithm

FIGURE 1: Flow chart of IQPSO algorithm.

is calculated according to the formula D = D, X

L + L, where Dy, and L represent the number of
input nodes and hidden layer nodes, respectively.
Then the position s; of particlei i = 1,2,...,M) is
randomly initialized according to the particle dimen-
sion D and swarm size M. s; can be written as s; =

[Wits---»Wip  >by,by,..., by ]. Finally, according to

input >

IQPSO introduced in Section 3.1, we can get the
global best position sy, which can be converted to
the input weights and hidden layer biases (w;, b;) of
ELM. What needs to be explained is that the fitness
of IQPSO is represented by the correct classification
rate.

(3) Test ELM: test samples are used to evaluate the
effectiveness of the proposed method.

4. Experimental Result and Discussion

In this section, we will verify the effectiveness of the proposed
algorithm. The experiments are performed on the Intel(R)
Core(TM) 3.60 GHz CPU, with 8 GB of RAM, and Matlab
R2013a environment.

4.1. The Performance of IQPSO on Benchmark Functions. In
order to demonstrate the effectiveness of IQPSO, four bench-
mark functions (see Table 1) are selected for the experiment.
The performance of IQPSO is compared with QPSO [26] and
MQPSO [35]. We set different swarm size M for the four
benchmark functions with different dimensions. M values are
20, 40, and 80. The maximum number of iterations is set as
1000, 1500, and 2000 corresponding to the dimensions 10,
20, and 30 for the four benchmark functions, respectively.
The value of contraction-expansion coeflicient o decreases
from 1.0 to 0.5 linearly. The mean values of the best fitness
values for 50 runs of each function are recorded in Tables 2-5,
respectively.

According to Tables 2-5, the results show that the IQPSO
works better than QPSO and MQPSO on Sphere function.
IQPSO can also generate better results than the other
methods in most cases on Rosenbrock function. On Ackley
function, we know that the proposed method outperforms
the QPSO but is not as good as MQPSO when the swarm
size is 80. In addition, on Rastrigin function, the IQPSO is
superior to QPSO and MQPSO except when the swarm size is
40 and dimension is 10. Generally speaking, the results show
that the IQPSO has better global search ability than QPSO
and MQPSO.

Figure 3 shows the convergence process of QPSO,
MQPSO, and IQPSO on the four benchmark functions when
the swarm size is 20, the dimension is 30, and the number
of iterations is about 2000. It can be seen from the figures
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F1GURE 2: Flow chart of IQPSO-ELM algorithm.

TABLE 2: Test results of Sphere function.

M Dimension Iteration QPSO MQPSO 1IQPSO
20 10 1000 7.7856e — 44 6.1122e — 39 7.7399¢ — 53
20 20 1500 2.0155e — 23 6.7054e — 20 4.5967¢ — 44
20 30 2000 1.3169¢ — 14 4.5319¢ — 13 6.3732e — 44
40 10 1000 9.4223e — 76 1.6406e — 62 1.0500e — 83
40 20 1500 1.4941e — 42 1.7135e — 38 2.3700e — 62
40 30 2000 4.4449¢ - 30 7.2975e — 28 3.6540e — 59
80 10 1000 4.1852e — 102 6.4074e — 75 7.7866e — 128
80 20 1500 1.7533e — 69 4.2385e — 55 5.3777e — 89
80 30 2000 9.5185e — 49 4.5975e — 42 4.9417e — 78
TABLE 3: Test results of Rosenbrock function.
M Dimension Iteration QPSO MQPSO 1IQPSO
20 10 1000 6.9194 5.8475 9.4985
20 20 1500 39.7105 38.1779 30.1639
20 30 2000 55.3889 61.9106 34.7486
40 10 1000 3.8067 4.6050 5.2745
40 20 1500 31.3511 21.8120 18.5787
40 30 2000 44.2303 44.8217 32.2876
80 10 1000 4.1268 3.3062 3.8372
80 20 1500 30.9957 24.6872 14.7379
80 30 2000 37.2249 31.8952 24.0227
TABLE 4: Test results of Ackley function.
M Dimension Iteration QPSO MQPSO IQPSO
20 10 1000 5.0093e - 15 4.6541e — 15 6.8567e — 15
20 20 1500 4.0184e — 12 3.1785e — 11 1.5667¢ — 14
20 30 2000 2.1237e — 8 5.7514e — 8 2.3412¢ - 14
40 10 1000 4.4409¢e - 15 4.3698e — 15 4.0962e - 15
40 20 1500 9.0594e — 15 8.5620e — 15 7.9226e — 15
40 30 2000 71374e — 14 1.0768e — 13 1.6094e — 14
80 10 1000 4.3698e — 15 4.2988e — 15 4.4409e - 15
80 20 1500 7.6383e — 15 6.2883e — 15 7.2068e — 15
80 30 2000 1.3323e — 14 9.2726e — 15 1.2825¢ — 14
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TABLE 5: Test results of Rastrigin function.

M Dimension Iteration QPSO MQPSO 1IQPSO
20 10 1000 3.9177 5.2533 3.4057
20 20 1500 14.6960 22.1470 14.1137
20 30 2000 30.0435 34.7817 28.9520
40 10 1000 2.6774 3.8467 2.7584
40 20 1500 10.3371 11.9833 9.0176
40 30 2000 19.9741 26.3297 18.3777
80 10 1000 1.8968 2.5669 1.6226
80 20 1500 7.6702 11.4880 7.0007
80 30 2000 15.5625 17.6602 14.5163
10 Sphere function 5 Rosenbrock function
10 T T T 10 T T T T -
o0 108
o 107
2 100 T 06
g 2
g 1020 £ 10°
E (=i
P 100} o
E Z 0
1074 |
10
10750 . . . . . . . . . 10! , . . . . . ) L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration
—— IQPSO —— IQPSO
—— MQPSO —— MQPSO
—— QPSO —— QPSO
() (b)
Ackley function R Rastrigin function
102 : : : : : : : : : 10 : : .
(5}
) =
: g
2 8 5
£ E 10 _
= [
5 4
z <
10-14 , . . . . : : : : 10! . . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration
—— IQPSO —— IQPSO
—— MQPSO —— MQPSO
—— QPSO —— QPSO
(c) (d)

FIGURE 3: Convergence process of different algorithms on benchmark functions (the average fitness values are represented in log scale). (a)
Sphere function; (b) Rosenbrock function; (c) Ackley function; (d) Rastrigin function.
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FIGURE 4: The performance comparison of different methods on the real-world datasets: (a) Diabetes; (b) Liver-disorders; (c) Auto-MPG.

that the convergence speed of the proposed method is much
faster than that of the other two methods. Then we know that
the proposed method has strong ability of global optimization
and could generate better solutions.

4.2. 'The Classification Performance of IQPSO-ELM on Real-
World Datasets. In this section, some real-world datasets
such as Diabetes, Liver-disorders, and Auto-MPG are used
to test the proposed algorithm. What needs to be explained
is that Diabetes dataset is a dataset about diabetes, which
includes patient physiological data and disease progression
after one year; the dataset is divided into 2 classes, with a
total of 768 samples; each sample has 8 kinds of attribute
values, that is, the number of features. Liver-disorders
dataset is a medical research database donated by Richard S.
Forsyth. There are 345 samples in this dataset, each sample
has 6 attribute values, and the dataset is divided into 2

categories. Auto-MPG dataset, which concerns the city-cycle
fuel consumption, is taken from the StatLib library which
is maintained at Carnegie Mellon University. There are 398
samples in Auto-MPG dataset and each sample has 7 attribute
values. The Auto-MPG dataset is divided into 3 classes. The
detailed description of the three datasets is listed in Table 6.
It is important to note that the training samples, test samples,
and validation samples are randomly generated according to
the number listed in Table 6. Figure 4 shows the performance
comparison of five algorithms, that is, ELM, PSO-ELM,
QPSO-ELM, MQPSO-ELM, and IQPSO-ELM. We should
know that the number of hidden nodes of the five algorithms
is 10 and the maximum number of iterations of evolutionary
ELM algorithms is 100. In order to avoid accidental results,
the algorithms run 50 times, respectively, and then calculate
the average value of results.
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TABLE 6: The description for the used datasets. TABLE 7: The description for the target.
Datasets Attributes  Classes Number of samples Target Height  (Bottom) diameter =~ Cone angle
Training Test Validation Conical target 1.2m 0.52m 31.8°
Diabetes 8 2 192 288 288 Cylindrical target Im 0.5m -
Liver-disorders 6 2 169 88 88 Cone-like target ~ 0.91m 0.325m 16
Auto-MPG 7 3 200 99 99 Spherical target - Im -
0.76 ' ' . ' ' TABLE 8: Performance comparison of different methods.
0.74 / S : I T Methods Training Testing
072 : B Time (s)  Accuracy  Time(s)  Accuracy
= 071 BP 0.2040 0.9950 0.0148 0.9915
§ 0681 ] SVM 53.1855 1 3.5684 0.9966
3 066 | ELM 0.0016 0.9609 0.0019 0.9437
"%&30 0.64 | PSO-ELM 254.3718 0.9884 0.0017 0.9864
= QPSO-ELM 130.5861 0.9919 0.0011 0.9803
062} MQPSO-ELM  128.9230  0.9927 0.0011 0.9779
064 IQPSO-ELM 1331459 0.9945 0.0012 0.9921
058 - L]

10 20 30 40 50 60 70 80 90 100
Hidden nodes
—— Diabetes

—— Auto-MPG
—— Liver-disorders

FIGURE 5: Test results of ELM on three different datasets with
different hidden nodes.

From Figure 4, we know that, in the aspect of training
and testing accuracy, the proposed method can achieve
higher accuracy on the given three datasets, which shows
the effectiveness of the proposed method. Figure 5 shows
the testing accuracies of ELM with varying hidden nodes on
the three datasets. As can be seen from Figure 5, with the
increase of the number of hidden nodes, the testing accuracy
of ELM has been improved. For the Diabetes dataset, when
the hidden layer node is set to 30, the test accuracy is up
to 0.7598, for the Liver-disorders dataset, when the number
of hidden nodes is 95, the test accuracy is 0.6601, and for
the Auto-MPG dataset, when the number of hidden layer
nodes is 95, the test accuracy is up to 0.7123. Although
ELM can greatly improve the classification speed, in order
to achieve better performance, ELM needs more hidden
nodes which may increase the complexity of the network. The
proposed method can use a simple network to obtain a good
classification result.

4.3. The Classification Performance of IQPSO-ELM on Radar
Data. In this section, simulated data and darkroom mea-
sured data are utilized to verify the validity of IQPSO-ELM.
The performance comparison of BP, SVM, ELM, and evo-
lutionary ELM including PSO-ELM, QPSO-ELM, MQPSO-
ELM, and IQPSO-ELM in this experiment is given in Tables

8 and 9. It should be noted that the number of hidden nodes
of evolutionary ELM is set to 10, the swarm size is 20, and
the maximum number of iterations is about 100. The number
of hidden nodes of BP is set to 10, the activation functions
are “logsig” and “purelin,” the training function is “trainlm,”
and the learning rate is 0.01. The kernel function of SVM is
“guass” and the penalty factor is 0.2. The number of hidden
nodes of ELM is 10 and the hidden layer activation function
is “sigmoid.”

4.3.1. Simulated Data. Radar target classification technology
is of great significance in both military and civil aspects.
The classification accuracy and real-time performance are
particularly important. Previously widely used classification
methods, such as BP and SVM, have the problems of low
classification accuracy or long time consumption. It is hard
for them to be excellent in two aspects of the real-time
performance and accuracy. To solve this issue, we propose
IQPSO-ELM algorithm, which not only makes full use of
the advantages of fast learning speed and good generalization
performance of ELM, but also utilizes the improved QPSO to
obtain the appropriate input weights and hidden layer biases.
The proposed method is able to solve the above problem very
well.

In this section, we utilize the simulated data to validate the
proposed algorithm. The simulated radar targets include con-
ical target, cylindrical target, cone-like target, and spherical
target. The size of each target model is shown in Table 7. It is
assumed that the radar observation time is from 100 to 600 s.
The selected target features include RCS mean, RCS variance,
scatter centers, and Micro-Motion period. According to the
prior knowledge and the related work [1, 2, 36], the data is
simulated by a certain random error added to a set of truth
values. In the simulated data, the RCS mean value of the target
is set to —=5dB, -4 dB, —4.5dB, and -2 dB, respectively, and
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FIGURE 6: Simulated data of radar target features: (a) RCS mean; (b) RCS variance; (c) Micro-Motion period; (d) scatter centers.

the relative error is 0.3, the RCS variance is set to 0.5, 0.8, 1.0,
and 0.3, respectively, and the relative error is 0.1, the Micro-
Motion period is set to 55, 4, 35, and 1s respectively, and
the relative error is 0.3, and the number of scattering centers
is set to 2, 2, 3, and 1, respectively, and the relative error is 1.
The simulated data is shown in Figure 6.

From Table 8, we know that the BP, SVM, ELM, and
the evolutionary ELM including PSO-ELM, QPSO-ELM,
MQPSO-ELM, and IQPSO-ELM algorithms have good effect
on radar target classification. In the training phase, the ELM
takes the least time and shows its fast learning ability. The

evolutionary ELM algorithms take more time than other
algorithms; that is because the evolutionary ELM algorithms
need to spend some time on optimizing the input weights
and hidden biases. In the testing phase, although the accuracy
of the proposed algorithm is slightly lower than that of
SVM, the test time is greatly reduced. Compared with
ELM, although the test times of the two algorithms are
not much different, the accuracy of proposed method is
higher. From Figure 7, we know that, in order to achieve
better classification performance, ELM needs more hidden
layer nodes, which results in complex network structure.
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TABLE 9: Performance comparison of different methods.

Methods Training Testing
Time (s) Accuracy Time (s) Accuracy
BP 0.0958 0.9150 0.0134 0.9020
SVM 0.8336 1 0.0566 0.9984
ELM 6.98e — 4 0.8752 3.22e -4 0.7284
PSO-ELM 6.4222 0.9984 312e -4 0.9733
QPSO-ELM 3.4785 0.9905 3.33e -4 0.9716
MQPSO-ELM 3.4429 0.9879 312e -4 0.9681
IQPSO-ELM 3.5496 0.9935 324e -4 0.9804
0.99 ; ; ; ; ; ; ; ; two aspects of the real-time and accuracy, the IQPSO-ELM
0985 F - n method is better.
0.98 .
_oo7s| 5. Conclusions
g
% 0.97 ¢ In this paper, we proposed a novel evolutionary extreme
S 0.965 | learning machine based on improved quantum-behaved
'«E 0.96 | particle swarm optimization. Further, we introduced it to
= 955 | radar target classification. The proposed method not only
095 | makes full use of the advantages of fast learning speed
and good generalization performance of ELM, but also
0.945 utilizes the improved QPSO to obtain the appropriate input

0~9410 0 30 a0 s w0 0 s e 100 weights and hidden layer biases, which is able to solve the

. problem that the ELM needs more hidden nodes to get

Hidden nodes better classification performance. The performance of the

FIGURE 7: Accuracy of ELM in different hidden nodes. IQPSO method is evaluated on the well-known benchmark

functions. The experimental results show that the proposed

method can not only achieve the best solutions, but also

converge to the optimal solution faster than other methods.

The experimental results show that the proposed algorithm ~ Moreover, the results of the experiment on the real-world

can meet the requirements of real-time performance and  datasets show that the proposed IQPSO-ELM method can

accuracy in radar target classification. achieve good performance. Finally, some experiments on

radar target classification verify the effectiveness of IQPSO-

4.3.2. Darkroom Measured Data. In this section, darkroom ~ ELM. Although the classification accuracy of the proposed

measured data is used to verity the validity of the proposed method is a little lowe.r than that of SVM, it runs much faster

method. The radar targets include the conical target, cylindri- than SVM' The experlmen‘Fal results show that t.h.e proposed

cal target, and cone-like target. The features of radar targets mEEHOdNS more cost-efficient than other traditional 'radar

are shown in Figure 8, including RCS mean, RCS variance, target classification met.hods.. We are absolutely cpnYlnced

Micro-Motion period, and Micro-Motion amplitude. Com- }hat t}zle work p reslent.eéi n this paper‘llls fe Xtrli:mely s.1gr.11ﬁcant

pared with the simulated data, due to the scene complexity, Orf) r;a)s:l ;alre%itoz ans(li g;u;)r?a Yﬁz Z?o eu(r); ifsraoptllilzltzizr?lil;
the darkroom measured data has the characteristics of large }[)he I;l ear future. P P PP

dynamic range and low stability.
According to Table 9, the evolutionary ELM methods

take more time in the training process; that is because the Acronyms

evolutionary ELM algorithms need to spend some time on ELM: Extreme learning machine
optimizing the input weights and hidden biases. In the testing PSO:  Particle swarm optimization

process, the accuracy of the proposed method is improved QPSO: Quantum-behaved particle swarm
compared with BP and ELM; although not as good as SVM, optimization

the proposed method takes less time than SVM. It can be IQPSO: Improved quantum-behaved particle
seen from Figure 9 that, in order to get better classification swarm optimization

effect, ELM needs more hidden nodes, which makes the D-S: Dempster-Shafer
network structure more complex. Therefore, considering the SVM:  Support vector machine
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FIGURE 8: Darkroom measured data of radar target features: (a) RCS mean; (b) RCS variance; (c) Micro-Motion period; (d) Micro-Motion

amplitude.

BP: Back propagation

SLFNs:  Single-hidden-layer feedforward neural
networks

C-ELM: Complex ELM

OS-ELM: Online sequential ELM

Ada-ELM: Adaptive ensemble model of ELM

[.ELM:  Incremental ELM

P_ELM: Pruned ELM

SaELM:  Self-adaptive ELM

MR: Manifold regularization

Micro-Motion amplitude (m)

RCS variance

100 150

Time (s)

—— Conical target
—— Cone-like target

—o— Cylindrical target

(b)

150

Time (s)

—— Conical target
—— Cone-like target
—6— Cylindrical target

(d)

SBELM:  Sparse Bayesian ELM
CLPSO:  Comprehensive learning particle swarm
optimizer

EWQPSO: Enhanced weighted quantum PSO
RLQPSO: Random local optimized QPSO
MQPSO: Modified QPSO.
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