2,547 research outputs found

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    An Augmented Reality Human-Robot Collaboration System

    Get PDF
    InvitedThis article discusses an experimental comparison of three user interface techniques for interaction with a remotely located robot. A typical interface for such a situation is to teleoperate the robot using a camera that displays the robot's view of its work environment. However, the operator often has a difficult time maintaining situation awareness due to this single egocentric view. Hence, a multimodal system was developed enabling the human operator to view the robot in its remote work environment through an augmented reality interface, the augmented reality human-robot collaboration (AR-HRC) system. The operator uses spoken dialogue, reaches into the 3D representation of the remote work environment and discusses intended actions of the robot. The result of the comparison was that the AR-HRC interface was found to be most effective, increasing accuracy by 30%, while reducing the number of close calls in operating the robot by factors of ~3x. It thus provides the means to maintain spatial awareness and give the users the feeling of working in a true collaborative environment

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Teaching robots parametrized executable plans through spoken interaction

    Get PDF
    While operating in domestic environments, robots will necessarily face difficulties not envisioned by their developers at programming time. Moreover, the tasks to be performed by a robot will often have to be specialized and/or adapted to the needs of specific users and specific environments. Hence, learning how to operate by interacting with the user seems a key enabling feature to support the introduction of robots in everyday environments. In this paper we contribute a novel approach for learning, through the interaction with the user, task descriptions that are defined as a combination of primitive actions. The proposed approach makes a significant step forward by making task descriptions parametric with respect to domain specific semantic categories. Moreover, by mapping the task representation into a task representation language, we are able to express complex execution paradigms and to revise the learned tasks in a high-level fashion. The approach is evaluated in multiple practical applications with a service robot

    Laser Graphics in Augmented Reality Applications for Real- World Robot Deployment

    Get PDF
    Lasers are powerful light source. With their thin shafts of bright light and colours, laser beams can provide a dazzling display matching that of outdoor fireworks. With computer assistance, animated laser graphics can generate eye-catching images against a dark sky. Due to technology constraints, laser images are outlines without any interior fill or detail. On a more functional note, lasers assist in the alignment of components, during installation
    corecore