13,302 research outputs found

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    A Survey to Identify an Efficient Classification Algorithm for Heart Disease Prediction

    Get PDF
    Classification is one of the prominent data mining techniques. The objective of the classification algorithms is to place the data in the appropriate class. Data mining plays a vital role in medical diagnosis. The aim of this paper is to identify an efficient classification algorithm for cardiovascular disease prediction. The efficiency of each classification algorithm is expressed using two parameters namely accuracy and Root Mean Square Error (RMSE). From our experimental analysis, we infer that iterative classifier optimizer algorithm results in higher accuracy

    A Survey to Identify an Efficient Classification Algorithm for Heart Disease Prediction

    Get PDF
    Classification is one of the prominent data mining techniques. The objective of the classification algorithms is to place the data in the appropriate class. Data mining plays a vital role in medical diagnosis. The aim of this paper is to identify an efficient classification algorithm for cardiovascular disease prediction. The efficiency of each classification algorithm is expressed using two parameters namely accuracy and Root Mean Square Error (RMSE). From our experimental analysis, we infer that iterative classifier optimizer algorithm results in higher accuracy

    Machine Learning Approaches for Heart Disease Detection: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the application of machine learning algorithms in the early detection of heart disease. Heart disease remains a leading global health concern, necessitating efficient and accurate diagnostic methods. Machine learning has emerged as a promising approach, offering the potential to enhance diagnostic accuracy and reduce the time required for assessments. This review begins by elucidating the fundamentals of machine learning and provides concise explanations of the most prevalent algorithms employed in heart disease detection. It subsequently examines noteworthy research efforts that have harnessed machine learning techniques for heart disease diagnosis. A detailed tabular comparison of these studies is also presented, highlighting the strengths and weaknesses of various algorithms and methodologies. This survey underscores the significant strides made in leveraging machine learning for early heart disease detection and emphasizes the ongoing need for further research to enhance its clinical applicability and efficacy

    An Enhanced K-Nearest Neighbor Predictive Model through Metaheuristic Optimization

    Get PDF
    The k-nearest neighbor (KNN) algorithm is vulnerable to noise, which is rooted in the dataset and has negative effects on its accuracy. Hence, various researchers employ variable minimization techniques before predicting the KNN in the quest so as to improve its predictive capability. The genetic algorithm (GA) is the most widely used metaheuristics for such purpose; however, the GA suffers a problem that its mating scheme is bounded on its crossover operator. Thus, the use of the novel inversed bi-segmented average crossover (IBAX) is observed. In the present work, the crossover improved genetic algorithm (CIGAL) is instrumental in the enhancement of KNN’s prediction accuracy. The use of the unmodified genetic algorithm has removed 13 variables, while the CIGAL then further removes 20 variables from the 30 total variables in the faculty evaluation dataset. Consequently, the integration of the CIGAL to the KNN (CIGAL-KNN) prediction model improves the KNN prediction accuracy to 95.53%. In contrast to the model of having the unmodified genetic algorithm (GA-KNN), the use of the lone KNN algorithmand the prediction accuracy is only at 89.94% and 87.15%, respectively. To validate the accuracy of the models, the use of the 10-folds cross-validation technique reveals 93.13%, 89.27%, and 87.77% prediction accuracy of the CIGAL-KNN, GA-KNN, and KNN prediction models, respectively. As the result, the CIGAL carried out an optimized GA performance and increased the accuracy of the KNN algorithm as a prediction model
    • …
    corecore