6 research outputs found

    Optimal trajectory tracking control for a wheeled mobile robot using backstepping technique

    Get PDF
    This work studies an optimal trajectory tracking of a wheeled mobile robot with the objective of minimizing energy consumption. First, the mathematical model, which takes into account the kinematic model of the mobile robot and the dynamic model of the actuators is presented. Then, a backstepping controller is designed and its parameters are tuned to satisfy several strict criteria such as rapid convergence, matching desired trajectory, and minimizing energy. For that, two cost functions were investigated and the best one has been selected. The significant reduction in energy losses achieved for all the proposed motion scenarios proves the effectiveness of our approach

    Adaptive sliding mode control for uncertain wheel mobile robot

    Get PDF
    In this paper a simple adaptive sliding mode controller is proposed for tracking control of the wheel mobile robot (WMR) systems. The WMR are complicated systems with kinematic and dynamic model so the error dynamic model is built to simplify the mathematical model. The sliding mode control then is designed for this error model with the adaptive law to compensate for the mismatched. The proposed control scheme in this work contains only one control loop so it is simple in both implementation and mathematical calculation. Moreover, the requirement of upper bounds of disturbance that is popular in the sliding mode control is cancelled, so it is convenient for real world applications. Finally, the effectiveness of the presented algorithm is verified through mathematical proof and simulations. The comparison with the existing work is also executed to evaluate the correction of the introduced adaptive sliding mode controller. Thoroughly, the settling time, the peak value, the integral square error of the proposed control scheme reduced about 50% in comparison with the compared disturbance observer based sliding mode control

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Enhanced Bioinspired Backstepping Control for a Mobile Robot With Unscented Kalman Filter

    No full text
    corecore