1,259 research outputs found

    Engineering the Virtual Node Layer for Reactive MANET Routing

    Get PDF
    The VNLayer approach simplifies software development for MANET by providing the developers an abstraction of a network divided into fixed geographical regions, each containing a virtual server for network services. In this paper, we present our study on reactive MANET routing over the VNLayer. During this research, we identified in our initial VNLayer implementation three major limitations that lead to heavy control traffic, long forwarding paths and frequent message collisions in MANET routing. To address the problems, we changed the assumptions made by the VNLayer on the link layer and extended the operations allowed by VNLayer. This results in a VNLayer implementation that can be tuned to optimize the performance of traffic intensive applications (such as routing) while maintaining their simplicity and robustness. Simulation results showed that VNAODV, a VNLayer based routing protocol adapted from AODV, delivers more packets, generates less routing traffic and creates more stable routes than AODV in a dense MANET with high node motion rates. This research validated that the VNLayer approach makes software development for MANET easier and improves the performance of MANET protocols

    DPRAODV: A Dynamic Learning System Against Blackhole Attack In AODV Based MANET

    Get PDF
    Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of routing attack where a malicious node advertise itself as having the shortest path to all nodes in the environment by sending fake route reply. By doing this, the malicious node can deprive the traffic from the source node. It can be used as a denial-of-service attack where it can drop the packets later. In this paper, we proposed a DPRAODV (Detection, Prevention and Reactive AODV) to prevent security threats of blackhole by notifying other nodes in the network of the incident. The simulation results in ns2 (ver-2.33) demonstrate that our protocol not only prevents blackhole attack but consequently improves the overall performance of (normal) AODV in presence of black hole attack
    • 

    corecore