8 research outputs found

    Health Information System Role-Based Access Control Current Security Trends and Challenges

    Get PDF
    Objective. This article objective is to highlight implementation characteristics, concerns, or limitations over role-based access control (RBAC) use on health information system (HIS) using industry-focused literature review of current publishing for that purpose. Based on the findings, assessment for indication of RBAC is obsolete considering HIS authorization control needs. Method. We have selected articles related to our investigation theme "RBAC trends and limitations" in 4 different sources related to health informatics or to the engineering technical field. To do so, we have applied the following search query string: "Role-Based Access Control" OR "RBAC" AND "Health information System" OR "EHR" AND "Trends" OR "Challenges" OR "Security" OR "Authorization" OR "Attacks" OR "Permission Assignment" OR "Permission Relation" OR "Permission Mapping" OR "Constraint". We followed PRISMA applicable flow and general methodology used on software engineering for systematic review. Results. 20 articles were selected after applying inclusion and exclusion criteria resulting contributions from 10 different countries. 17 articles advocate RBAC adaptations. The main security trends and limitations mapped were related to emergency access, grant delegation, and interdomain access control. Conclusion. Several publishing proposed RBAC adaptations and enhancements in order to cope current HIS use characteristics. Most of the existent RBAC studies are not related to health informatics industry though. There is no clear indication of RBAC obsolescence for HIS use.Sao Paulo Federal University (Unifesp) sponsorshipUniv Fed Sao Paulo, Hlth Informat Dept, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Hlth Informat Dept, Sao Paulo, SP, BrazilWeb of Scienc

    Health Information System Role-Based Access Control Current Security Trends and Challenges

    Get PDF

    An Access Control Model to Facilitate Healthcare Information Access in Context of Team Collaboration

    Get PDF
    The delivery of healthcare relies on the sharing of patients information among a group of healthcare professionals (so-called multidisciplinary teams (MDTs)). At present, electronic health records (EHRs) are widely utilized system to create, manage and share patient healthcare information among MDTs. While it is necessary to provide healthcare professionals with privileges to access patient health information, providing too many privileges may backfire when healthcare professionals accidentally or intentionally abuse their privileges. Hence, finding a middle ground, where the necessary privileges are provided and malicious usage are avoided, is necessary. This thesis highlights the access control matters in collaborative healthcare domain. Focus is mainly on the collaborative activities that are best accomplished by organized MDTs within or among healthcare organizations with an objective of accomplishing a specific task (patient treatment). Initially, we investigate the importance and challenges of effective MDTs treatment, the sharing of patient healthcare records in healthcare delivery, patient data confidentiality and the need for flexible access of the MDTs corresponding to the requirements to fulfill their duties. Also, we discuss access control requirements in the collaborative environment with respect to EHRs and usage scenario of MDTs collaboration. Additionally, we provide summary of existing access control models along with their pros and cons pertaining to collaborative health systems. Second, we present a detailed description of the proposed access control model. In this model, the MDTs is classified based on Belbin’s team role theory to ensure that privileges are provided to the actual needs of healthcare professionals and to guarantee confidentiality as well as protect the privacy of sensitive patient information. Finally, evaluation indicates that our access control model has a number of advantages including flexibility in terms of permission management, since roles and team roles can be updated without updating privilege for every user. Moreover, the level of fine-grained control of access to patient EHRs that can be authorized to healthcare providers is managed and controlled based on the job required to meet the minimum necessary standard and need-to-know principle. Additionally, the model does not add significant administrative and performance overhead.publishedVersio

    Policy-based asset sharing in collaborative environments

    Get PDF
    Resource sharing is an important but complex problem to be solved. The problem is exacerbated in a dynamic coalition context, due to multi-partner constraints (imposed by security, privacy and general operational issues) placed on the resources. Take for example scenarios such as emergency response operations, corporate collaborative environments, or even short-lived opportunistic networks, where multi-party teams are formed, utilizing and sharing their own resources in order to support collective endeavors, which otherwise would be difficult, if not impossible, to achieve by a single party. Policy-Based Management Systems (PBMS) have been proposed as a suitable paradigm to reduce this complexity and provide a means for effective resource sharing. The overarching problem that this thesis deals with, is the development of PBMS techniques and technologies that will allow in a dynamic and transparent way, users that operate in collaborative environments to share their assets through high-level policies. To do so, it focuses on three sub-problems each one of which is related to a different aspect of a PBMS, making three key contributions. The first is a novel model, which proposes an alternative way for asset sharing, better fit than the traditional approaches when dealing with collaborative and dynamic environments. In order for all of the existing asset sharing approaches to comply with situational changes, an extra overhead is needed due to the fact that the decision making centre – and therefore, the policy making centre – is far away from where the changes take place unlike the event-driven approach proposed in this thesis. The second contribution is the proposal of an efficient, high-level policy conflict analysis mechanism, that provides a more transparent – in terms of user interaction – alternative way for maintaining unconflicted PBMS. Its discrete and sequential execution, breaks down the analysis process into discrete steps, making the conflict analysis more efficient compared to existing approaches, while eases human policy authors to track the whole process interfacing with it, in a near to natural language representation. The contribution of the third piece of research work is an interest-based policy negotiation mechanism, for enhancing asset sharing while promoting collaboration in coalition environments. The enabling technology for achieving the last two contributions (contribution 2 & 3) is a controlled natural language representation, which is used for defining a policy language. For evaluating the proposed ideas, in the first and third contributions we run simulation experiments while we simulate and also conduct formal analysis for the second one

    Engineering a Policy-Based System for Federated Healthcare Databases

    No full text
    Policy-based management for federated healthcare systems have recently gained increasing attention due to strict privacy and disclosure rules. While the work on privacy languages and enforcement mechanisms, such as Hippocratic databases, has advanced our understanding of designing privacy-preserving policies for healthcare databases, the need to integrate these policies in practical healthcare framework is becoming acute. Additionally, while most work in this area has been organization-oriented, dealing with exchange of information between healthcare organizations (such as referrals), the requirements for the emerging area of personal healthcare information management have so far not been adequately addressed. These shortcomings arise from the lack of a sophisticated policy specification language and enforcement architecture that can capture the requirement for (i) integration of privacy and disclosure policies with well-known healthcare standards used in the industry in order to specify the precise requirements of a practical healthcare system, and (ii) provision of ubiquitous healthcare services to patients using the same infrastructure that enables federated healthcare management for organizations. In this paper, we have designed a policy-based system to mitigate these concerns. One, we have designed our disclosure and privacy policies using a requirements specification based on a set of use cases for the Clinical Document Architecture (CDA) standard proposed by the community. Two, we present a context-aware policy specification language which allows encoding of CDA-based requirements use-cases into privacy and disclosure policy rules. We have shown that our policy specification language is effective in terms of handling a variety of expressive constraints on CDA-encoded document contents. Our language enables specification of privacy-aware access control for federated healthcare information across organizational boundaries, while the use of contextual constraints allows the incorporation of user and environment context in the access control mechanism for personal healthcare information management. Moreover, the declarative syntax of the policy rules makes the policy adaptable to changes in privacy regulations or patient preferences. We also present an enforcement architecture for the federated healthcare framework proposed in this paper
    corecore