4,784 research outputs found

    Indexing large genome collections on a PC

    Full text link
    Motivation: The availability of thousands of invidual genomes of one species should boost rapid progress in personalized medicine or understanding of the interaction between genotype and phenotype, to name a few applications. A key operation useful in such analyses is aligning sequencing reads against a collection of genomes, which is costly with the use of existing algorithms due to their large memory requirements. Results: We present MuGI, Multiple Genome Index, which reports all occurrences of a given pattern, in exact and approximate matching model, against a collection of thousand(s) genomes. Its unique feature is the small index size fitting in a standard computer with 16--32\,GB, or even 8\,GB, of RAM, for the 1000GP collection of 1092 diploid human genomes. The solution is also fast. For example, the exact matching queries are handled in average time of 39\,μ\mus and with up to 3 mismatches in 373\,μ\mus on the test PC with the index size of 13.4\,GB. For a smaller index, occupying 7.4\,GB in memory, the respective times grow to 76\,μ\mus and 917\,μ\mus. Availability: Software and Suuplementary material: \url{http://sun.aei.polsl.pl/mugi}

    Reference Based Genome Compression

    Full text link
    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.Comment: 5 pages; Submitted to the IEEE Information Theory Workshop (ITW) 201
    • …
    corecore