25,377 research outputs found

    Engineering incentive schemes for ad hoc networks: a case study for the lanes overlay [online]

    Get PDF
    In ad hoc networks, devices have to cooperate in order to compensate for the absence of infrastructure. Yet, autonomous devices tend to abstain from cooperation in order to save their own resources. Incentive schemes have been proposed as a means of fostering cooperation under these circumstances. In order to work effectively, incentive schemes need to be carefully tailored to the characteristics of the cooperation protocol they should support. This is a complex and demanding task. However, up to now, engineers are given virtually no help in designing an incentive scheme. Even worse, there exists no systematic investigation into which characteristics should be taken into account and what they imply. Therefore, in this paper, we propose a systematic approach for the engineering of incentive schemes. The suggested procedure comprises the analysis and adjustment of the cooperation protocol, the choice of appropriate incentives for cooperation, and guidelines for the evaluation of the incentive scheme. Finally, we show how the proposed procedure is successfully applied to a service discovery overlay

    A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks

    Full text link
    In mobile ad hoc networks, by attacking the corresponding routing protocol, an attacker can easily disturb the operations of the network. For ad hoc networks, till now many secured routing protocols have been proposed which contains some disadvantages. Therefore security in ad hoc networks is a controversial area till now. In this paper, we proposed a Lightweight and Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc networks. For the route discovery attacks in MANET routing protocols, our protocol gives an effective security. It supports the node to drop the invalid packets earlier by detecting the malicious nodes quickly by verifying the digital signatures of all the intermediate nodes. It punishes the misbehaving nodes by decrementing a credit counter and rewards the well behaving nodes by incrementing the credit counter. Thus it prevents uncompromised nodes from attacking the routes with malicious or compromised nodes. It is also used to prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM

    Intervention in Power Control Games With Selfish Users

    Full text link
    We study the power control problem in wireless ad hoc networks with selfish users. Without incentive schemes, selfish users tend to transmit at their maximum power levels, causing significant interference to each other. In this paper, we study a class of incentive schemes based on intervention to induce selfish users to transmit at desired power levels. An intervention scheme can be implemented by introducing an intervention device that can monitor the power levels of users and then transmit power to cause interference to users. We mainly consider first-order intervention rules based on individual transmit powers. We derive conditions on design parameters and the intervention capability to achieve a desired outcome as a (unique) Nash equilibrium and propose a dynamic adjustment process that the designer can use to guide users and the intervention device to the desired outcome. The effect of using intervention rules based on aggregate receive power is also analyzed. Our results show that with perfect monitoring intervention schemes can be designed to achieve any positive power profile while using interference from the intervention device only as a threat. We also analyze the case of imperfect monitoring and show that a performance loss can occur. Lastly, simulation results are presented to illustrate the performance improvement from using intervention rules and compare the performances of different intervention rules.Comment: 33 pages, 6 figure
    • …
    corecore