3,215 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    Cloud technology options towards Free Flow of Data

    Get PDF
    This whitepaper collects the technology solutions that the projects in the Data Protection, Security and Privacy Cluster propose to address the challenges raised by the working areas of the Free Flow of Data initiative. The document describes the technologies, methodologies, models, and tools researched and developed by the clustered projects mapped to the ten areas of work of the Free Flow of Data initiative. The aim is to facilitate the identification of the state-of-the-art of technology options towards solving the data security and privacy challenges posed by the Free Flow of Data initiative in Europe. The document gives reference to the Cluster, the individual projects and the technologies produced by them

    Ethical issues for internet use policy : balancing employer and employee perspectives

    Full text link
    An organisational internet use policy (IUP) is a recognised deterrent to manage insider internet misuse. However, IUPs have proven ineffective against this threat, perhaps because of their neglect of the ethical issues involved. An important part of setting an IUP involves the resolution of key ethical dilemmas when employer and employee perspectives conflict. This paper explores the ethical issues that must be addressed when developing an organisational IUP. It draws on a conceptual analysis and an interpretive study of five medium-size and large organisations in Australia and North America. The paper provides a set of key ethical issues for an IUP and compares and contrasts the employer and employee perspectives. It highlights the need to balance the employer and employee perspectives when setting an IUP. Other implications for theory and practice are discussed.<br /

    Privacy-preserving techniques for computer and network forensics

    Get PDF
    Clients, administrators, and law enforcement personnel have many privacy concerns when it comes to network forensics. Clients would like to use network services in a freedom-friendly environment that protects their privacy and personal data. Administrators would like to monitor their network, and audit its behavior and functionality for debugging and statistical purposes (which could involve invading the privacy of its network users). Finally, members of law enforcement would like to track and identify any type of digital crimes that occur on the network, and charge the suspects with the appropriate crimes. Members of law enforcement could use some security back doors made available by network administrators, or other forensic tools, that could potentially invade the privacy of network users. In my dissertation, I will be identifying and implementing techniques that each of these entities could use to achieve their goals while preserving the privacy of users on the network. I will show a privacy-preserving implementation of network flow recording that can allow administrators to monitor and audit their network behavior and functionality for debugging and statistical purposes without having this data contain any private information about its users. This implementation is based on identity-based encryption and differential privacy. I will also be showing how law enforcement could use timing channel techniques to fingerprint anonymous servers that are running websites with illegal content and services. Finally I will show the results from a thought experiment about how network administrators can identify pattern-like software that is running on clients\u27 machines remotely without any administrative privileges. The goal of my work is to understand what privileges administrators or law enforcement need to achieve their goals, and the privacy issues inherent in this, and to develop technologies that help administrators and law enforcement achieve their goals while preserving the privacy of network users
    corecore