2 research outputs found

    Virtualization for Distributed Ledger Technology (vDLT)

    Get PDF
    Recently, with the tremendous development of crypto-currencies, distributed ledger technology (DLT) (e.g., blockchain) has attracted significant attention. The traditional Internet was originally design to to handle the exchange of information. With DLT, we will have the Internet of value. Although DLT has great potential to create new foundations for our economic and social systems, the existing DLT has a number of drawbacks (e.g., scalability) that prevent it from being used as a generic platform for distributed

    State-of-the-art authentication and verification schemes in VANETs:A survey

    Get PDF
    Vehicular Ad-Hoc Networks (VANETs), a subset of Mobile Ad-Hoc Networks (MANETs), are wireless networks formed around moving vehicles, enabling communication between vehicles, roadside infrastructure, and servers. With the rise of autonomous and connected vehicles, security concerns surrounding VANETs have grown. VANETs still face challenges related to privacy with full-scale deployment due to a lack of user trust. Critical factors shaping VANETs include their dynamic topology and high mobility characteristics. Authentication protocols emerge as the cornerstone of enabling the secure transmission of entities within a VANET. Despite concerted efforts, there remains a need to incorporate verification approaches for refining authentication protocols. Formal verification constitutes a mathematical approach enabling developers to validate protocols and rectify design errors with precision. Therefore, this review focuses on authentication protocols as a pivotal element for securing entity transmission within VANETs. It presents a comparative analysis of existing protocols, identifies research gaps, and introduces a novel framework that incorporates formal verification and threat modeling. The review considers key factors influencing security, sheds light on ongoing challenges, and emphasises the significance of user trust. The proposed framework not only enhances VANET security but also contributes to the growing field of formal verification in the automotive domain. As the outcomes of this study, several research gaps, challenges, and future research directions are identified. These insights would offer valuable guidance for researchers to establish secure authentication communication within VANETs
    corecore