14,501 research outputs found

    Location Based Power Reduction Cloud Integrated Social Sensor Network

    Get PDF
    It is great to hear about the advancements in wireless sensor networks and their applications, as well as the integration of cloud computing to enhance data analysis and storage capabilities. Indeed, these technologies have opened up numerous possibilities across various fields, including infrastructure tracking, environmental monitoring, healthcare, and more. The concept of a social sensor cloud, as you mentioned, brings an interesting dimension to this technology landscape by focusing on knowledge-sharing and connecting like-minded individuals or organizations. This could potentially lead to more collaborative and efficient solutions across a wide range of domains. Energy efficiency is a critical consideration in the design and operation of wireless sensor networks and the cloud infrastructure that supports them. The limited battery life of sensors necessitates careful management of energy consumption to ensure optimal functionality and longevity. Sleep scheduling methods are a common technique used to manage energy consumption in these networks. By coordinating when sensors are active and when they are in a low-power sleep mode, energy consumption can be significantly reduced without compromising the network's overall effectiveness. In the context of the Social Sensor Cloud, managing energy efficiency becomes even more crucial due to the shorter battery life of the sensors involved. This is particularly relevant given the growing concerns about environmental sustainability and the need to reduce energy consumption across technological systems. It's clear that your research paper addresses these challenges head-on, by exploring energy-efficient techniques for the Social Sensor Cloud. Sleep scheduling is just one of the many strategies that researchers and engineers are working on to strike a balance between functionality and energy consumption. Other methods might include optimizing data transfer protocols, developing energy-harvesting mechanisms, and enhancing sensor hardware efficiency. As technology continues to evolve, the integration of wireless sensor networks, cloud computing, and social networks will likely pave the way for innovative solutions and transformative applications. Addressing energy efficiency concerns will undoubtedly play a crucial role in ensuring the long-term viability and positive impact of these technologies

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    EYES - Energy Efficient Sensor Networks

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This document gives an overview of the EYES project

    Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors

    Full text link
    In this paper, we design an optimal sensor collaboration strategy among neighboring nodes while tracking a time-varying parameter using wireless sensor networks in the presence of imperfect communication channels. The sensor network is assumed to be self-powered, where sensors are equipped with energy harvesters that replenish energy from the environment. In order to minimize the mean square estimation error of parameter tracking, we propose an online sensor collaboration policy subject to real-time energy harvesting constraints. The proposed energy allocation strategy is computationally light and only relies on the second-order statistics of the system parameters. For this, we first consider an offline non-convex optimization problem, which is solved exactly using semidefinite programming. Based on the offline solution, we design an online power allocation policy that requires minimal online computation and satisfies the dynamics of energy flow at each sensor. We prove that the proposed online policy is asymptotically equivalent to the optimal offline solution and show its convergence rate and robustness. We empirically show that the estimation performance of the proposed online scheme is better than that of the online scheme when channel state information about the dynamical system is available in the low SNR regime. Numerical results are conducted to demonstrate the effectiveness of our approach
    corecore