1,206 research outputs found

    Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation

    Full text link
    This paper compares two important downlink multicell interference mitigation techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and network MIMO. We consider a cooperative wireless cellular system operating in time-division duplex (TDD) mode, wherein each cooperating cluster includes BB base-stations (BSs), each equipped with multiple antennas and scheduling KK single-antenna users. In an LS-MIMO system, each BS employs BMBM antennas not only to serve its scheduled users, but also to null out interference caused to the other users within the cooperating cluster using zero-forcing (ZF) beamforming. In a network MIMO system, each BS is equipped with only MM antennas, but interference cancellation is realized by data and channel state information exchange over the backhaul links and joint downlink transmission using ZF beamforming. Both systems are able to completely eliminate intra-cluster interference and to provide the same number of spatial degrees of freedom per user. Assuming the uplink-downlink channel reciprocity provided by TDD, both systems are subject to identical channel acquisition overhead during the uplink pilot transmission stage. Further, the available sum power at each cluster is fixed and assumed to be equally distributed across the downlink beams in both systems. Building upon the channel distribution functions and using tools from stochastic ordering, this paper shows, however, that from a performance point of view, users experience better quality of service, averaged over small-scale fading, under an LS-MIMO system than a network MIMO system. Numerical simulations for a multicell network reveal that this conclusion also holds true with regularized ZF beamforming scheme. Hence, given the likely lower cost of adding excess number of antennas at each BS, LS-MIMO could be the preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing for Large-Scale MIMO Communication

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa
    • …
    corecore