820 research outputs found

    Graph colouring MAC protocol for underwater sensor networks

    Get PDF

    Designing Routing Strategy for Underwater WSN

    Get PDF
    Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea’s surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void regions

    Implementation of Multicast Routing Protocol on MANET

    Get PDF
    Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea�s surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void region

    Improving Localization Accuracy and Packet Scheduling in Underwater Sensor Networks

    Get PDF
    One of the vital issues for wireless sensing element networks is increasing the network time period. Bunch is associate economical technique for prolonging the time period of wireless sensing element networks. This thesis proposes a multihop bunch formula (MHC-multihop clustering algorithm) for energy saving in wireless sensing element networks. MHC selects the clusterheads consistent with theto parameters the remaining energy and node degree. Additionally cluster heads choose their members consistent with the two parameters of sensing element the remaining energy and therefore the distance to its cluster head. MHC is finished in 3 phases quickly. Simulation results show that the planned formula will increase the network time period over 16 % compared of the LEACH(Low-energy adaptive clustering hierarchy) protoco

    A performance simulation tool for the analysis of data gathering in both terrestrial and underwater sensor networks

    Get PDF
    Wireless sensor networks (WSNs) have greatly contributed to human-associated technologies. The deployment of WSNs has transcended several paradigms. Two of the most significant features of WSNs are the intensity of deployment and the criticalness of the applications that they govern. The tradeoff between volume and cost requires justified investments for evaluating the multitudes of hardware and complementary software options. In underwater sensor networks (USNs), testing any technique is not only costly but also difficult in terms of full deployment. Therefore, evaluation prior to the actual procurement and setup of a WSN and USN is an extremely important step. The spectrum of performance analysis tools encompassing the test-bed, analysis, and simulation has been able to provide the prerequisites that these evaluations require. Simulations have proven to be an extensively used tool for analysis in the computer network field. A number of simulation tools have been developed for wired/wireless radio networks. However, each simulation tool has several restrictions when extended to the analysis of WSNs. These restrictions are largely attributed to the unique nature of each WSN within a designated area of research. In addition, these tools cannot be used for underwater environments with an acoustic communication medium, because there is a wide range of differences between radio and acoustic communications. The primary purpose of this paper is to present, propose, and develop a discrete event simulation designed specifically for mobile data gathering in WSNs. In addition, this simulator has the ability to simulate 2-D USNs. This simulator has been tailored to cater to both mobile and static data gathering techniques for both topologies, which are either dense or light. The results obtained using this simulator have shown an evolving efficient simulator for both WSNs and USNs. The developed simulator has been extensively tested in terms of its validity and scope of governance
    corecore