45 research outputs found

    Energy Efficient Branch and Bound based On-Chip Irregular Network Design

    Get PDF
    Here we present a technique which construct the topology for heterogeneous SoC, (Application Specific NoC) such that total Dynamic communication energy is optimized. The topology is certain to satisfy the constraints of node degree as well the link length. We first layout the topology by finding the shortest path between traffic characteristics with the branch and bound optimization technique. Deadlock is dealt with escape routing using Spanning tree. Investigation outcome show that the proposed design methodology is fast and achieves significant dynamic energy gain

    An Energy Conscious Topology Augmentation Methodology for On-Chip Interconnection Networks

    Get PDF
    On-chip communication, modular, scalable packet-switched micro-network of interconnects, generally known as Network-on-Chip (NoC) architecture can be designed as regular or application-specific (irregular) network topologies. Application specific custom network topologies are advantageous in terms of optimized design according to given performance metrics and regular network topologies are advantageous in terms of its modularity, lower design time and efforts required and thus are suitable for mass production. So to offer the advantages of both the topologies this paper proposes a methodology to augment the regular topology according to the application characteristics. The experimental results demonstrate that the proposed methodology can reduce dynamic communication energy consumption by on average of 32.79% and reduction in average per flit latency by on average of 16.22% over regular 2D NoC architecture

    Energy-Aware Network-on-Chip Application Mapping Based on Domain Knowledge Genetic Algorithm

    Get PDF
    This paper addresses energy-aware application mapping for large-scale Network-on-chip (NoC). The increasing number of intellectual property (IP) cores in multi-processor system-on-chips (MPSoCs) makes NoC application mapping more challenging to find optimum core-to-topology mapping. This paper proposes an application mapping technique that incorporates domain knowledge into genetic algorithm (GA) to minimize the energy consumption of NoC communication. The GA is initialized with knowledge on network partition whereas the genetic crossover operator is guided with inter-core communication demands. NoC energy estimation is based on analytical energy model and cycle-accurate Noxim simulation. For large-scale NoC, application mapping using knowledge-based genetic operator saves up to 28% energy compared to the one on conventional GA. Adding knowledge-based initial mapping speeds up convergence by 81% and further saves energy by 5% compared to only knowledge-based crossover GA. Furthermore, cycle-accurate simulations of applications with traffic dependency show the effectiveness of the proposed application mapping for large-scale NoC

    Task mapping and routing optimization for hard real-time Networks-on-Chip

    Get PDF
    Interference from high priority tasks and messages in a hard real-time Networks-on-Chip (NoC) create computation and communication delays. As the delays increase in number, maintaining the system’s schedulability become difficult. In order to overcome the problem, one way is to reduce interference in the NoC by changing task mapping and network routing. Some population-based heuristics evaluate the worst-case response times of tasks and messages based on the schedulability analysis, but requires a significant amount of optimization time to complete due to the complexity of the evaluation function. In this paper, we propose an optimization technique that explore both parameters simultaneously with the aim to meet the schedulability of the system, hence reducing the optimization time. One of the advantages from our approach is the unrepeated call to the evaluation function, which is unaddressed in the heuristics that configure design parameters in stages. The results show that a schedulable configuration can be found from the large design space

    A technique for low energy mapping and routing in network-on-chip architectures

    Get PDF
    corecore