27,312 research outputs found
A Survey of Green Networking Research
Reduction of unnecessary energy consumption is becoming a major concern in
wired networking, because of the potential economical benefits and of its
expected environmental impact. These issues, usually referred to as "green
networking", relate to embedding energy-awareness in the design, in the devices
and in the protocols of networks. In this work, we first formulate a more
precise definition of the "green" attribute. We furthermore identify a few
paradigms that are the key enablers of energy-aware networking research. We
then overview the current state of the art and provide a taxonomy of the
relevant work, with a special focus on wired networking. At a high level, we
identify four branches of green networking research that stem from different
observations on the root causes of energy waste, namely (i) Adaptive Link Rate,
(ii) Interface proxying, (iii) Energy-aware infrastructures and (iv)
Energy-aware applications. In this work, we do not only explore specific
proposals pertaining to each of the above branches, but also offer a
perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate;
Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications.
18 pages, 6 figures, 2 table
JEERP: Energy Aware Enterprise Resource Planning
Ever increasing energy costs, and saving requirements, especially in enterprise contexts, are pushing the limits of Enterprise Resource Planning to better account energy, with component-level asset granularity. Using an application-oriented approach we discuss the different aspects involved in designing Energy Aware ERPs and we show a prototypical open source implementation based on the Dog Domotic Gateway and the Oratio ER
Energy-Aware Cloud Management through Progressive SLA Specification
Novel energy-aware cloud management methods dynamically reallocate
computation across geographically distributed data centers to leverage regional
electricity price and temperature differences. As a result, a managed VM may
suffer occasional downtimes. Current cloud providers only offer high
availability VMs, without enough flexibility to apply such energy-aware
management. In this paper we show how to analyse past traces of dynamic cloud
management actions based on electricity prices and temperatures to estimate VM
availability and price values. We propose a novel SLA specification approach
for offering VMs with different availability and price values guaranteed over
multiple SLAs to enable flexible energy-aware cloud management. We determine
the optimal number of such SLAs as well as their availability and price
guaranteed values. We evaluate our approach in a user SLA selection simulation
using Wikipedia and Grid'5000 workloads. The results show higher customer
conversion and 39% average energy savings per VM.Comment: 14 pages, conferenc
Energy-aware virtual machine consolidation for cloud data centers
One of the issues in virtual machine consolidation (VMC) in cloud data centers is categorizing different workloads to classify the state of physical servers. In this paper, we propose a new scheme of host's load categorization in energy-performance VMC framework to reduce energy consumption while meeting the quality of service (QoS) requirement. Specifically the under loaded hosts are classified into three further states, i.e., Under loaded, normal and critical by applying the under load detection algorithm. We also design overload detection and virtual machine (VM) selection policies. The simulation results show that the proposed policies outperform the existing policies in Cloud Sim in terms of both energy and service level agreements violation (SLAV) reduction
Energy-aware dynamic pricing model for cloud environments
Energy consumption is a critical operational cost for Cloud providers. However, as commercial providers typically use fixed pricing schemes that are oblivious about the energy costs of running virtual machines, clients are not charged according to their actual energy impact. Some works have proposed energy-aware cost models that are able to capture each client’s real energy usage. However, those models cannot be naturally used for pricing Cloud services, as the energy cost is calculated after the termination of the service, and it depends on decisions taken by the provider, such as the actual placement of the client’s virtual machines. For those reasons, a client cannot estimate in advance how much it will pay. This paper presents a pricing model for virtualized Cloud providers that dynamically derives the energy costs per allocation unit and per work unit for each time period. They account for the energy costs of the provider’s static and dynamic energy consumption by sharing out them according to the virtual resource allocation and the real resource usage of running virtual machines for the corresponding time period. Newly arrived clients during that period can use these costs as a baseline to calculate their expenses in advance as a function of the number of requested allocation and work units. Our results show that providers can get comparable revenue to traditional pricing schemes, while offering to the clients more proportional prices than fixed-price models.Peer ReviewedPostprint (author's final draft
Energy-aware Load Balancing Policies for the Cloud Ecosystem
The energy consumption of computer and communication systems does not scale
linearly with the workload. A system uses a significant amount of energy even
when idle or lightly loaded. A widely reported solution to resource management
in large data centers is to concentrate the load on a subset of servers and,
whenever possible, switch the rest of the servers to one of the possible sleep
states. We propose a reformulation of the traditional concept of load balancing
aiming to optimize the energy consumption of a large-scale system: {\it
distribute the workload evenly to the smallest set of servers operating at an
optimal energy level, while observing QoS constraints, such as the response
time.} Our model applies to clustered systems; the model also requires that the
demand for system resources to increase at a bounded rate in each reallocation
interval. In this paper we report the VM migration costs for application
scaling.Comment: 10 Page
- …
