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Abstract. Energy consumption is a critical operational cost for Cloud
providers. However, as commercial providers typically use fixed pricing
schemes that are oblivious about the energy costs of running virtual ma-
chines, clients are not charged according to their actual energy impact.
Some works have proposed energy-aware cost models that are able to
capture each client’s real energy usage. However, those models cannot be
naturally used for pricing Cloud services, as the energy cost is calculated
after the termination of the service, and it depends on decisions taken
by the provider, such as the actual placement of the client’s virtual ma-
chines. For those reasons, a client cannot estimate in advance how much
it will pay. This paper presents a pricing model for virtualized Cloud
providers that dynamically derives the energy costs per allocation unit
and per work unit for each time period. They account for the energy costs
of the provider’s static and dynamic energy consumption by sharing out
them according to the virtual resource allocation and the real resource
usage of running virtual machines for the corresponding time period.
Newly arrived clients during that period can use these costs as a base-
line to calculate their expenses in advance as a function of the number
of requested allocation and work units. Our results show that providers
can get comparable revenue to traditional pricing schemes, while offering
to the clients more proportional prices than fixed-price models.
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1 Introduction

Cloud computing has consolidated as a paradigm for the on-demand provisioning
of computing resources to end users over the Internet. These services are exe-
cuted in virtual machines (VMs) hosted in large-scale data centers, which have
become greedy consumers of energy to provide those services. Greenpeace [1]
estimates that data centers energy use can grow up to 1012 billion kWh by
2020, which is a 3x increment regarding their energy consumption in 2007. The
cost of this enormous amount of energy has turned into the primary cost driver
for data centers. Belady [6] estimates that the annual amortized energy costs in
a data center for a single server exceeded the cost of the server itself in 2008.
Consequently, any cost model for the Cloud should be energy-aware.
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Cloud computing was originally devised as a utility computing paradigm,
where the VMs had to be offered to the end users in a pay-as-you-use manner,
i.e. the user pays only for the resources really consumed [8], such as any other
utility service like water and electricity. However, commercial Cloud providers [4,
12, 14] typically charge their clients in a pay-as-you-go manner, i.e. the user pays
a fixed value per unit of time for the VMs, whether he is using them or not [8].
Whereas those fixed prices encompass the operational costs of the provider, they
are oblivious about the real energy cost to run each specific VM.

We claim that Cloud providers must offer an energy-aware and proportional
dynamic pricing model to their users. Prices must be calculated dynamically
because both the energy consumed in the data center (which depends on the
number of clients and the amount of resources each of them uses) and the price
of that energy vary over time (e.g. in Spain the energy price varies per hour [15]).
Prices must be proportional so that users are charged according to their actual
energy impact, i.e. clients using more energy should pay more.

Some works [2, 3,8, 11, 13] have proposed cost models for VMs that can ac-
count for their individual energy impact. However, this energy cost is calculated
after the termination of the VM, once the full energy usage profile of the VM and
the provider’s placement decisions about that VM are known. This impedes some
of the advantages of fixed prices models discussed before, such as predictability,
i.e. clients can know the cost of running their VMs before running them because
it only depends on the client’s behavior, and fairness, i.e. two identical VMs
launched at the same time and with the same duration will pay the same.

This paper presents a pricing model for virtualized Cloud providers that
is energy-aware, proportional, predictable, and fair. Our model builds upon the
concepts of Allocation Units, which quantify the amount of virtual resources that
are allocated to the VMs, and Work Units, which quantify the amount of work
executed by using those resources. Our model dynamically derives the energy
costs per Allocation Unit and per Work Unit for each time period. They account
for the costs of the providers static and dynamic energy consumption by sharing
out them according to the virtual resource allocation and the real resource usage
of running VMs for the corresponding time period. Newly arrived clients during
that period can use these costs as a baseline to calculate their expenses in advance
as a function of the number of requested allocation and work units.

2 Related Work

Pricing models in Cloud Computing have been broadly classified as subscription-
based (clients reserve resources in advance for a specific period of time by pay-
ing a fixed price up-front), pay-per-use (resources are provided on-demand and
clients are charged a fixed price per unit of time on usage basis), and hybrid (com-
bination of subscription-based and pay-per-use) [10]. However, commercial Cloud
providers might classify their prices differently depending on their customers’
requirements. For example, Amazon [4] offers On-Demand, Reserved, and Spot
Pricing Instances, being the former the most popular among the clients. Other
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providers such as Azure and Rackspace support similar pricing schemes [12, 14].
None of these commercial providers consider the real energy cost to run the VMs
when charging the clients.

Some works [2, 3,8, 11, 13] have proposed cost models for VMs that account
for their individual energy impact, but this is calculated after the termination
of the VM, thus a client cannot estimate in advance how much it will pay.

Aldossary and Djemame [2] proposed a pricing model charges the customer
based on the actual resource usage per unit including the energy consumption.
Their model distributes the dynamic energy among the VMs according to their
utilization, but the static energy is distributed evenly among VMs, independently
of their size. Furthermore, they use the average power to calculate the energy
consumption, which is not very accurate when resource usage fluctuates.

Hinz et al. [8] presented a cost model which accounts for the individualized
energy cost for each VM according to its CPU and network usage. As a novelty,
it includes also a shared cost from common hypervisor management operations,
which is proportionally distributed among VMs according to their number of
virtual processors (as they do also with the static energy).

Kurpicz et al. [11] presented a model for energy-proportional accounting for
VMs which determines their dynamic energy costs by using the real utilization
of the resources and divides the static energy costs proportionally to the number
of virtual processors of the VM. To offer some cost predictability to users, the
model reports a lower and an upper bound of the VM total cost, but these
bounds are very coarse-grained.

3 Problem Statement

Our purpose is to define a pricing scheme that determines how much a given
virtual machine j will pay if it runs for a time period of D hours. We define this
cost as CY, (D). As listed in the top part of Table 1, the user must only provide
as inputs the number of requested Allocation Units by the VM and the number
of Work Units to be executed by the VM.

We define the number of Allocation Units of a VM j (AU‘j/ ) as the prod-
uct of its number of virtual processors (VC’PU‘j/ ) and its amount of memory
(RAM{} ), which are normalized with respect to the capabilities of an Amazon
ml.small VM (i.e. VOPUML =1 core and RAMPML = 1.7GB). According to
this, AU‘]‘/ v 1s calculated as shown in Eq. (1). The number of virtual processors
and the amount of memory of VMs are the critical parameters that determine
the number of VMs that can be allocated in a physical host.

VCPU},, RAM,,

AUY,, = :
VM vepPUMy RAMDY,

(1)

We define the number of Work Units of a VM j (WU‘J, ) as the number of
millions of instructions to be executed by the VM.
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Table 1: Parameters used by the model.
Symbol  |Description
VCPUY,,,;|Number of virtual processors of VM j
RAM,,, |GB of RAM of VM j
AU, Number of Allocation Units needed by VM j (calculated as in Eq. (1))
WU, [Number of Work Units to be executed by VM j
Epc(t) |DC total energy consumption during time period ¢ (in Joules)
ESpc(t) |DC static energy consumption during time period ¢ (in Joules)
EDpc(t) |DC dynamic energy consumption during time period ¢ (in Joules)
Ey(t) Energy consumption of host ¢ during time period ¢ (in Joules)
EIi(t) Energy consumption of host ¢ during time period ¢ when idle (in Joules)
AUpc(t) |Number of awarded Allocation Units in the DC during time period ¢
WUpc(t) |Number of Work Units executed in the DC during time period ¢
AU} (t)  |Number of awarded Allocation Units in host 4 during time period ¢
WU%(t) |Number of Work Units executed in host 4 during time period ¢
Eay(t) |Energy consumption for each AU during period ¢ (in Joules)
Ewu(t) |Energy consumption for each WU during period ¢ (in Joules)
Cau(t) |Cost of energy consumed per AU during period ¢ (in €/kWh)
Cwu(t) |Cost of energy consumed per WU during period ¢ (in €/kWh)

Ply Average power consumption of host ¢ when idle (in Watts)
MIPS:, |Performance of host i (in Millions of Instructions per second)
Py (t) Instantaneous power consumption of host ¢ at time ¢ (in Watts)
U Instantaneous CPU utilization of host ¢ at time ¢ (€ [0,1])

N(t) Number of active hosts during time period ¢

V Msk; (t) |Amount of VMs on host ¢ during time period ¢

Price(t) |Energy price during time period ¢ (in €/kWh)

Ts Time elapsed between two samples (in seconds)

NS(t) Number of samples during time period ¢t ; NS(t) = ¢/Ts

The provider offers the energy costs per Allocation and Work Unit for the
time when the VM has been submitted (¢y). Next section describes how the
provider accounts for these costs. The client can use them as a baseline to calcu-
late their expenses in advance as a function of the number of requested Allocation
and Work units, as follows: C{,,,(D) = (AU}, ;- Cav (to) + WU, -Cwu(to))- D.

4 Pricing Model

To derive the energy costs per Allocation Unit and per Work Unit for each time
period, our model calculates a number of parameters for each time period. They
are introduced in the second part of Table 1. The model requires a number of
input parameters that must be introduced by the provider. Some of these param-
eters are obtained by calibrating the data center in a profiling stage (see third
part of Table 1), others are gathered periodically by monitoring the data center
status (see fourth part of Table 1), and the rest are configuration parameters or
other external inputs (see bottom of Table 1).
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4.1 Energy consumption model

Our model must account first for the total energy consumption of the data center
during each time period t (Epc(t)), which can be calculated as the sum of the
energy consumption from all the active hosts during that period, as shown in
Eq. (2). The energy consumption of host ¢ during time period ¢ results from
integrating all the power consumption of host ¢ during that time period. Given
that we do not have the continuous function describing that power consumption
but a set of samples of its value, we do the calculation as presented in Eq. (3),
where P%(t)) is the k-th sample of the power consumption of host i.

N(t) NS(t)

Fpo() =3 Ey() (2)  Ei(t) = / Phtydt=Ts- S Pi(t)  (3)
=1 k=1

The energy consumption of the data center (Epc(t)) comprises both the
static energy consumption (EFSpc(t)) due to keeping the hosts on and the dy-
namic energy consumption (EDpc(t)) spent by all the running VMs to do their
work, as shown next: Epc(t) = ESpc(t) + EDpe(t).

The static energy consumption of the data center (ESpc(t)) is the sum of the
idle energy consumption of all the active hosts. These come from their average
idle power consumption during time period ¢ as shown in Eq. (4).

N(t) N(t)
ESpc(t)=Y_ EI(t)=Y Pyt (4)
1=1 =1

The dynamic energy consumption of the data center (EDp¢(t)) is calculated
from the total and the static energy consumption for the data center during time
period t as follows: EDp¢(t) = Epc(t) — ESpc(t).

4.2 Energy-aware cost model

The provider dynamically and periodically calculates its prices for an Allocation
Unit (AU) and a Work Unit (WU) to reflect the variability in the electricity
price and the energy consumption (due to changing workloads).

The static and dynamic energy costs are shared out according to the virtual
resource allocation and the real resource usage of running VMs for the corre-
sponding time period. This will result in a cost per Allocation Unit (Cay(t))
and a cost per Work Unit (Cyy(t)) for that time period.

Cap (t) is calculated from the energy consumption per Allocation Unit during
time period ¢ as follows: C' 4y (t) = Price(t) - Eay(t)/3600000. As shown in Eq.
(5), Eap(t) is derived from the static energy consumption of the data center
(ESpc(t)), which was calculated in the previous section, and the number of
awarded Allocation Units to all the running VMs in the data center (AUpc (1)),
which is the sum of all the Allocation Units awarded in all the active hosts
during time period t (AU (t)). As shown in Eq. (6), it can be calculated as
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the awarded Allocation Units from all the running VMs on each host i, where
V M s, (t) represents the number of running VMs in host i during the time ¢ and
AU}, is the number of Allocation Units of VM j.

ESpe(t) N(#) ‘ N(t) VMsi (1) '
Bav(t) = Sy ©) AUDC@):;AU;{(t):Zl Z AUY - (6)
1= 1= 1=

Cwuy (t) is calculated from the energy consumption per Work Unit during
period ¢ as follows: Cyy(t) = Price(t) - Ewy(t)/3600000. As shown in Eq. (7),
Ewy(t) is derived from the dynamic energy consumption of the data center
(EDpc(t)), which was calculated in the previous section, and the number of
Work Units executed in the data center (WUpc(t)), which is the sum of the
units executed in all the hosts during period ¢t (WU%(t)), as shown in Eq. (8).

_ EDpc(1)

EWU(t) - WUDC(t)

N(t)
(7) WUpc(t) = > WULE)  (8)

i=1

The number of Work Units that a host can execute depends on its perfor-

mance capability. In this paper, we have defined a Work Unit as 1 million of
instructions to be executed, and hence, we measure the performance of hosts
using MIPS. According to this, the number of Work Units executed in host i
during time period ¢t (WU} (t)) depends on the maximum performance of host
i (MIPS%;) and the host utilization during time period ¢ while running VMs
(U};). Without loss of generality, we measure the host utilization as its CPU
utilization, since the CPU is the highest contributor to the power consumption
of a host. However, our model could be easily extended to consider also the uti-
lization of other resources. Given that we do not have the continuous function
describing the CPU utilization of host ¢ during time period ¢ but a set of samples
of its value, we calculate WU}, (t) as shown in Eq. (9), where U (t) is the k-th
sample of the CPU utilization of host ¢ (between 0 and 1).

t NS(t)
WU4(t) = MIPS - / Ui (t)dt = MIPS% - Ts - Z Ul (tr) (9)
1 k=1

5 Experiments and Evaluation

5.1 Experimental setup and workload

A data center comprising 200 high-performance hosts has been simulated with
CloudSim-plus [7]. Each host consists of two Intel Xeon 8180M processors with
28 cores each, two 128GB PC42400U RAM DIMM, and two disks 2.5-3840GB-
SATA, providing a computing performance of 143360 MIPS. Its idle and maxi-
mum rated power have been reported as 109.11 and 578.85 Watts, respectively
[9]. The electricity fee paid by the data center is calculated according to the elec-
tricity price, which varies every hour [15]. The sampling period Ts is 5 minutes.
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Table 2: Configuration of tasks Table 3: Configuration of VMs
Task type|Amount|Instructions VM type [vCPU MIPS|RAM
1 500 15000000 m4.Large 2 5120 |8 GB

2 500 20000000 m4.xLarge 4 10240 |16 GB

3 500 28000000 m4.2xLarge| 8 20480 |32 GB

4 500 35000000 m4.4xLarge| 16 |40960 |64 GB

The workload comprises 2000 tasks of 4 types according to their number of
instructions, as shown in Table 2. Tasks are allocated randomly into 2000 VMs,
which can be categorized into 4 types according to Amazon EC2 [4], as shown in
Table 3. The placement of each VM is decided by the simulator according to its
resource requirements. We assume batch tasks with mid-high average utilization
[5] as shown in Fig. 1. To reflect the daily varying utilization, tasks are assumed
to arrive according to the distribution in Fig. 2. Depending of the size of the
task, its CPU utilization, and its placement, each task will run from 2 to 7 hours.
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Fig.1: CPU utilization distribution Fig. 2: Task start time distribution

5.2 Results and evaluation

Using the above settings, we simulate one day of the provider’s execution. Fig.
3 and 4 show how the cost per AU and per WU change during the experiment.
The cost per AU is related to the resource allocation and the static energy
consumption in the data center and the cost per WU is related to the real CPU
usage from all the running VMs and their dynamic energy consumption.

We compare our model with a fixed-price model like Amazon’s [4], and a
usage-based price model, such as Aldossary’s [3]. We include also an optimal
price that is calculated as the cost of the dynamic energy consumed by the VM.
The idea of considering only the dynamic energy cost comes from the concept
of energy-proportional computing (i.e. energy should be consumed in proportion
to the amount of work performed) [5]. We evaluate the total revenue for the
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provider. We also assess the proportionality by checking how far the price of
each VM is from its optimal price.
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Fig. 5: Price of each VM (smaller sizes) Fig.6: Price of each VM (bigger sizes)

As shown in Table 4, all the models provide comparable revenue. Fig. 5 and
6, which display the price of each VM (ordering them by size), show that our
model is the closest to the optimal for small and midsized VMs. Only big VMs
pay proportionally more because they are charged for their impact in the static
energy consumption. The figures confirm that the fixed model does not consider
the real energy cost when pricing each VM. The usage-based model does it, but
it does not allow clients to estimate their price in advance as our model does.

Table 4: Revenue comparison for the pricing models
Our Price Model|Fixed Price Model|Usage Price Model
Revenue 56.107 € 56.113 € 56.111 €
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6 Conclusions

In this paper, we have presented a pricing model for virtualized Cloud providers
that is energy-aware, proportional, predictable, and fair. Our model dynamically
derives the energy costs per Allocation Unit and per Work Unit for each time
period. Newly arrived clients during that period can use these costs as a baseline
to calculate their expenses in advance as a function of the number of requested
allocation and work units. Our results demonstrate that providers can get com-
parable revenue to traditional pricing schemes, while offering fairer and more
proportional prices to the clients than fixed-price models. Our future work will
consider in the model the utilization of other resources apart from the CPU, and
perform a more complex evaluation using client traces from real providers.
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