3 research outputs found

    High-precision hydraulic pressure control based on linear pressure-drop modulation in valve critical equilibrium state

    Get PDF
    High precision and fast response are of great significance for hydraulic pressure control in automotive braking systems. In this paper, a novel sliding mode control based high-precision hydraulic pressure feedback modulation is proposed. Dynamical models of the hydraulic brake system including valve dynamics are established. An open loop load pressure control based on the linear relationship between the pressure-drop and coil current in valve critical open equilibrium state is proposed, and also experimentally validated on a hardware-in-the-loop test rig. The control characteristics under different input pressures and varied coil currents are investigated. Moreover, the sensitivity of the proposed modulation on valve's key structure parameters and environmental temperatures are explored with some unexpected drawbacks. In order to achieve better robustness and precision, a sliding mode control based closed loop scheme is developed for the linear pressure-drop modulation. Comparative tests between this method and the existing methods are carried out. The results validate the effectiveness and superior performance of the proposed closed loop modulation method

    T-S Fuzzy Model Based H

    Get PDF
    This paper presents a double loop controller for a 7-DoF automobile electrohydraulic active suspension via T-S fuzzy modelling technique. The outer loop controller employs a modified H-infinity feedback control based on a T-S fuzzy model to provide the actuation force needed to ensure better riding comfort and handling stability. The resulting optimizing problem is transformed into a linear matrix inequalities solution issue associated with stability analysis, suspension stroke limit, and force constraints. Integrating these via parallel distributed compensation method, the feedback gains are derived to render the suspension performance dependent on the perturbation size and improve the efficiency of active suspensions. Adaptive Robust Control (ARC) is then adopted in the inner loop design to deal with uncertain nonlinearities and improve tracking accuracy. The validity of improvements attained from this controller is demonstrated by comparing with conventional Backstepping control and a passive suspension on a 7-DoF simulation example. It is shown that the T-S fuzzy model based controller can achieve favourable suspension performance and energy conservation under both mild and malevolent road inputs
    corecore