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Robust disturbance rejection control methodology is proposed for Euler-Lagrange systems, and parameters optimization strategy
for the observer is explored. First, the observer based disturbance rejection methodology is analyzed, based on which the
disturbance rejection paradigm is proposed. Thus, a disturbance observer (DOB) with partial feedback linearization and a low-
pass filter is proposed for nonlinear dynamic model under relaxed restrictions of the generalized disturbance.Then, the outer-loop
backstepping controller is designed for desired tracking performance. Considering that the parameters of DOB cannot be obtained
directly based on Lyapunov stability analysis, parameter of DOB is optimized under standard𝐻

∞
control framework. By analyzing

the influence of outer-loop controller on the inner-loop observer parameter, robust stability constraint is proposed to guarantee
the robust stability of the closed-loop system. Experiment on attitude tracking of an aircraft is carried out to show the effectiveness
of the proposed control strategy.

1. Introduction

Euler-Lagrange systems widely exist in practice, such as
manipulator, mobile robot, underwater vehicle, surface ves-
sel, and aerial vehicle. Consequently, motion control of Euler-
Lagrange systems has been widely explored in the past
decades. Motion control systems usually work at unknown
environment, and inevitably, they suffer from system uncer-
tainties and external disturbances, which will affect the
control performance or even make the system unstable
[1]. To deal with this problem, numerous approaches have
been proposed, such as sliding mode control [2–4], adaptive
control [5–7], robust control [8–10], and intelligent control
[11–13]. These control methods can more or less deal with
the system uncertainties. However, facing the problems is still
inevitable, such as chattering of slidingmode control, stability
problem of adaptive control, conservative robust control, and
convergence rate of weights in neural network and fuzzy
system.

The effectiveness of disturbance observer (DOB) has been
shown in many applications, such as humanoid robot control
[14, 15], manipulator control [16–18], aircraft control [19, 20],
optical disk control [21, 22], motor control [23, 24], and

vibration control [25, 26]. Traditional DOB methodology,
which is proposed based on linear system, cannot be used
directly in nonlinear systems [27]. In [28], traditional linear
DOB is applied for disturbance rejection of nonlinear system.
However, only first-order binomial coefficient typed low-
pass filter is used for DOB implementation.The performance
of the closed-loop system cannot be improved effectively.
Meanwhile, the optimization strategy of parameters is not
investigated. Nonlinear DOB is proposed in [29, 30], which
can be directly used for disturbance estimation in nonlinear
systems. In this paper, we find that estimation effect of
nonlinear DOB is the same as that of linear DOB with
first-order low-pass filter when a constant observer gain is
selected. And asymptotic stability is guaranteed simply based
on the assumption that the generalized disturbances and
their first-order derivatives are bounded and that the first
derivatives go to zero in the steady state, which is not realistic
in most conditions. Meanwhile, for a closed-loop system,
the parameters of inner-loop observer depend on not only
system uncertainties and measurement noise, but also the
structure and parameter of outer-loop controller. However,
the existing works rarely discuss parameters optimization of
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the observer.The influence caused by outer-loop controller is
never explored in existing researches.

From the descriptions above, a robust DOB based dis-
turbance rejection controller is proposed, and parameters
optimization strategy is investigated. Nonlinear DOB and
extended state observer (ESO) are first analyzed to show the
essence of the disturbance estimation problem. Then, under
relaxed restrictions of disturbance and system perturbation,
a novel disturbance observer is proposed for nonlinear
system. The observer consists of a feedback linearization
compensator and a low-pass filter.The feedback linearization
compensator is introduced to linearize the nonlinear dynam-
ics into a linear part disturbed by the equivalent disturbance,
whereas the low-pass filter is employed to estimate the
equivalent disturbances. Then, a state feedback controller is
presented for the nominal model to acquire desired perfor-
mance. Stability of the overall closed-loop system is analyzed
based on Lyapunov theory. At last, the influence on DOB
parameters optimization caused by structure and parameter
of outer-loop controller is analyzed. The robust stability
constraint condition, which ensures the robust stability of
the whole system, is proposed. Thus, the𝐻

∞
method can be

employed to optimize the parameters of the DOB.
The main contributions of this paper are summarized as

follows:
(1) The disturbance rejection paradigm of the observer

based disturbance rejection methodology is pro-
posed.

(2) With the proposed disturbance rejection paradigm, a
novel observer, whose low-pass filter of its structure
can be selected to be flexible, is proposed for nonlin-
ear systems.

(3) The parameters optimization method is investigated
to make sure the designed control system can guar-
antee the robust stability of the closed-loop system.

The rest of this paper is organized as follows. In Section 2,
a mechanical system model is established, based on which
the disturbance rejection problem is formulated. In Section 3,
DOB based control methodology is proposed, and parame-
ters of DOB are optimized to guarantee the robust stability.
In Section 4, attitude tracking task is carried out to show the
effectiveness of the proposed strategy, followed by conclu-
sions in Section 5.

2. System Model and Problem Statement

2.1. System Model. An Euler-Lagrange equation for the
mechanical system is described as

𝑀(𝑞) 𝑞̈ + 𝐶 (𝑞, 𝑞̇) 𝑞̇ + 𝐺 (𝑞) = 𝑢 + 𝑑, (1)

where 𝑞 ∈ R𝑛 and 𝑞̇ ∈ R𝑛 denote the generalized coordinates
and velocities and 𝑢 and 𝑑 are the control input and external
disturbance, respectively.𝑀(𝑞) ∈ R𝑛×𝑛 represent the positive
definite inertial matrix,𝐶(𝑞, 𝑞̇)𝑞̇ ∈ R𝑛×1 represents thematrix
of Coriolis and centrifugal forces, and𝐺(𝑞) ∈ R𝑛×1 represents
the gravity term.The nonlinear functions𝑀(⋅),𝐶(⋅), and𝐺(⋅)
satisfy the following assumption.

Assumption 1. The unknown nonlinear functions𝑀(⋅), 𝐶(⋅),
and𝐺(⋅) are continuously differentiable and locally Lipschitz.

By introducing the definitions

𝑥
1
= 𝑞,

𝑥
2
= 𝑞̇,

(2)

(1) can be rewritten as

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= −𝑀

−1

(𝑥
1
) (𝐶 (𝑥

1
, 𝑥
2
) 𝑥
2
+ 𝐺 (𝑥

1
))

+ 𝑀
−1

(𝑥
1
) (𝑢 + 𝑑) .

(3)

According to the parameters perturbation, it is impossible
to establish the system model accurately. By introducing the
notations

𝑀(𝑞) = 𝑀
0
(𝑞) + 𝑀

Δ
(𝑞) ,

𝐶 (𝑞, 𝑞̇) = 𝐶
0
(𝑞, 𝑞̇) + 𝐶

Δ
(𝑞, 𝑞̇) ,

𝐺 (𝑞) = 𝐺
0
(𝑞) + 𝐺

Δ
(𝑞) ,

(4)

where subscript 0 denotes the nominal value of the corre-
sponding matrix and subscript Δ denotes the part of pertur-
bation, then, the dynamics can be described as follows:

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= 𝐹 (𝑥) + 𝐺 (𝑥) 𝑢 + 𝑓 + 𝑑

󸀠

,

(5)

where 𝐹(𝑥) = −𝑀
−1

0
(𝑥
1
)(𝐶
0
(𝑥
1
, 𝑥
2
)𝑥
2
+ 𝐺
0
(𝑥
1
)), 𝐺(𝑥) =

𝑀
−1

0
(𝑥
1
), and 𝑑󸀠 = 𝑀−1(𝑥

1
)𝑑.𝑓 is the perturbed term caused

by the internal uncertainty, which is defined as

𝑓 = 𝑀
−1

(𝑥
1
)

⋅ [𝑀
−1

0
(𝑥
1
)𝑀
Δ
(𝑥
1
) (𝐶
0
(𝑥
1
, 𝑥
2
) 𝑥
2
+ 𝐺
0
(𝑥
1
) + 𝑢)

− 𝐶
Δ
(𝑥
1
, 𝑥
2
) 𝑥
2
− 𝐺
Δ
(𝑥
1
)] .

(6)

In practical applications, the consumption of the external
disturbances is finite; that is, the external disturbance 𝑑

is bounded. Nevertheless, internal uncertainty 𝑓 usually
depends on system state. Assume that the controller 𝑢 is
defined as 𝑢 = 𝜐(𝑥

1
, 𝑥
2
, 𝑑̂); nonlinear function 𝜐(⋅) is

continuously differentiable.Thus, from the definition of𝑓, we
can also obtain that𝑓 is continuously differentiable. From the
above analysis, the following assumptions can be obtained.

Assumption 2. The external disturbance 𝑑󸀠 = 𝑑
1
+ 𝑑
2
(𝑡) is

bounded,where𝑑
1
and𝑑
2
(𝑡) represent the constant and time-

varying component. The time-varying component satisfies
‖𝑑
2
(𝑡)‖ ≤ 𝑑.

Assumption 3. The internal uncertainties 𝑓 satisfy ‖𝑓‖ ≤

𝛼(𝑥
1
, 𝑥
2
, 𝑑), where 𝛼(⋅) is classicalK function.
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2.2. Problem Formulation. For the systemmodel described in
(5), the key point of the antidisturbance control methodology
is the observer configuration. The control accuracy and
robustness of the overall system are largely determined
by the performance of observer. Here, several widely used
observers are provided for analysis. Based on the disturbance
rejection paradigm, we propose a novel observer structure
and parameter optimization strategy for nonlinear systems.

2.2.1. Extended State Observer (ESO). ESO is themost impor-
tant part of the active disturbance rejection control (ADRC)
[31]. Instead of identifying the plant dynamics off-line, ESO
can estimate the combined effect of plant dynamics and
external disturbance in real time. However, ESO can be only
used for the standard chained systems. Here, an ESO is
designed as

̇̂𝑧
1
= 𝐹 (𝑥) + 𝐺 (𝑥) 𝑢 + 𝑧̂

2
+ 𝑔
1
(𝑥
1
− 𝑧̂
1
) ,

̇̂𝑧
2
= 𝑔
2
(𝑥
1
− 𝑧̂
1
) ,

(7)

where 𝑔
1
and 𝑔

2
are positive constant to be selected such that

𝑠
2

+ 𝑔
1
𝑠 + 𝑔
2
is Hurwitz.

By substituting (5) into (7) and introducing the Laplace
Transformation, we finally get the following equation:

𝑧̂
2
=

𝑔
2

𝑠2 + 𝑔
1
𝑠 + 𝑔
2

(𝑓 + 𝑑
󸀠

) , (8)

where 𝑠 is the Laplace operator.

2.2.2. Nonlinear Disturbance Observer (NDOB). The NDOB
has beenwidely used for nonlinear systemswith uncertainties
[30]. It can estimate the composite disturbances and compen-
sate in the feedback controller. The NDOB for the dynamics
of (5) is given as

𝑑̂ = 𝑧 + 𝑝 (𝑥) ,

𝑧̇ = −𝐿 (𝑥) (𝑧 + 𝑝 (𝑥)) + 𝐿 (𝑥) (−𝐹 (𝑥) − 𝐺 (𝑥) 𝑢) ,

(9)

where 𝐿(𝑥) ≜ 𝜕𝑝(𝑥)/𝜕𝑥.
From (9) we get

̇̂
𝑑 = −𝐿 (𝑥) 𝑑̂ + 𝐿 (𝑥) (𝑓 + 𝑑

󸀠

) . (10)

Then, by introducing the Laplace Transformation, we finally
get

𝑑̂ =
𝐿 (𝑥)

𝑠 + 𝐿 (𝑥)
(𝑓 + 𝑑

󸀠

) . (11)

In most applications, observer gain 𝐿(𝑥) is usually
selected as a positive constant.

2.2.3. Disturbance Rejection Paradigm. According to the
analysis above, we find that the estimation of the observer
can be obtained as the real composite disturbance passing
through a low-pass filter. It can be summarized that the

estimation effect of the observers should fulfill the following
disturbance rejection paradigm:

𝑑̂ = 𝑄 (𝑠)𝐷, (12)

where 𝐷 ≜ 𝑓 + 𝑑
󸀠 is the composite disturbance which

contains both external disturbances and equivalent internal
disturbances.𝑄(𝑠) is a low-pass filter such that 𝑑̂ can converge
to𝐷 asymptotically.

For most researches on observer based control, the
structure of the low-pass filter 𝑄(𝑠) is usually fixed by the
observer structure.Meanwhile, the parameters tuning usually
relies on trial and error; rarely do researches focus on the
point of how to optimize the observer parameters according
to the property of system uncertainties, outer-loop controller,
measurement noise, and so forth. Hence, in this paper, a
novel observer, whose low-pass filter can be selected to be
flexible, is proposed for the nonlinear system. Particularly, the
parameters optimization strategy is explored for nonlinear
systems.

3. Controller Design and
Parameter Optimization

3.1. Controller Design. The objective of controller design is
that the observer is proposed to estimate the internal uncer-
tainty 𝑓 and external disturbance 𝑑󸀠, and thus the estimation
𝑑̂ is compensated in the closed-loop control system. Then,
feedback controller 𝑢 is designed to stabilize the system to
the equilibrium point (𝑥

1
= 0, 𝑥

2
= 0). The control structure

is shown in Figure 1.
The inner-loop observer is designed firstly. By introduc-

ing a feedback linearization

𝑢 = 𝐺
−1

(𝑥) (V − 𝐹 (𝑥)) , (13)

the nonlinear system can be compensated as

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= V + 𝐷 (𝑥, 𝑡) ,

(14)

where𝐷(𝑥, 𝑡) = 𝑓 + 𝑑󸀠 is the composite disturbance.
Then, the observer is designed as

𝑑̂ = −𝑄 (𝑠) V + 𝑠𝑄 (𝑠) 𝑥
2
, (15)

where 𝑄(𝑠) is a low-pass filter to be optimized.
According to (14) and (15), it can be obtained that 𝑑̂ =

−𝑄(𝑠)V + 𝑄(𝑠)𝑥̇
2
= 𝑄(𝑠)𝐷(𝑠); that is, the observer satisfies

the disturbance rejection paradigm in (12). In practical
applications, 𝑄(𝑠) and 𝑠𝑄(𝑠) can be realized in state-space.

Then, the backstepping controller can be designed for the
nominal system. Introduce the following notations:

𝑒
1
= 𝑥
1
− 𝑥
1d,

𝑒
2
= 𝑥
2
− 𝛽
1
,

(16)

where 𝛽
1
is the pseudo controller to be designed, 𝑥

1d is a
differentiable reference input.
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−

−
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D(x, t)
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Q(s) sQ(s)

x2
x11

s

+

Figure 1: Control structure of the closed-loop system.

From the definition of 𝑒
1
and 𝑒

2
, derivative of 𝑒

2
is

described as

̇𝑒
1
= 𝑥
2
− 𝑥̇
1d = 𝑒2 + 𝛽1 − 𝑥̇1d. (17)

The pseudo controller 𝛽
1
is hence defined as

𝛽
1
= −𝐾
1
𝑒
1
+ 𝑥̇
1d, (18)

where𝐾
1
is a positive symmetric matrix.

Substituting (18) into (17) yields

̇𝑒
1
= −𝐾
1
𝑒
1
+ 𝑒
2
. (19)

Define a Lyapunov function 𝑉
1
= (1/2)𝑒

T
1
𝑒
1
; its derivative is

𝑉̇
1
= −𝑒

T
1
𝐾
1
𝑒
1
+ 𝑒
1
𝑒
2
. Notice that the derivative of 𝑒

2
is

̇𝑒
2
= 𝑥̇
2
− 𝛽̇
1
= V + 𝐷 (𝑥, 𝑡) − 𝛽̇

1
, (20)

where 𝛽̇
1
= −𝐾
1
𝑒
2
+𝐾
2

1
𝑒
1
+𝑥̈
1d. According to the backstepping

approach and observer output 𝑑̂, the controller is finally
obtained as

𝑢 = 𝐺
−1

(𝑥) (−𝐾
2
𝑒
2
− 𝑒
1
+ 𝛽̇
1
− 𝑑̂ − 𝐹 (𝑥)) . (21)

For the Lyapunov function 𝑉
2
= (1/2)𝑒

T
1
𝑒
1
+ (1/2)𝑒

T
2
𝑒
2
, its

time-derivative satisfies

𝑉̇
2
≤ −𝑒

T
1
𝐾
1
𝑒
1
− 𝑒

T
2
𝐾
2
𝑒
2
+
󵄩󵄩󵄩󵄩𝑒2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑑̃
󵄩󵄩󵄩󵄩󵄩
, (22)

where 𝑑̃ ≜ 𝐷(𝑥, 𝑡) − 𝑑̂ is disturbance estimating error of
the observer. Assume that the estimating error of observer is
the input of the above system; then the unforced system is
exponentially stable at the equilibrium point.

3.2. Stability Analysis

Theorem 4. For the given second-order mechanical system
in (5), the external disturbances and equivalent internal
uncertainties satisfy Assumptions 2 and 3. By adopting the
observer in (15) and controller in (21), the control error of system
states and estimation error of observer are locally uniformly
ultimately bounded (UUB).

Proof. For the outer-loop controller, by substituting 𝑒
1
and 𝑒
2

into (21), it can be obtained that

V = − (1 + 𝐾
1
𝐾
2
) 𝑥
1
− (𝐾
1
+ 𝐾
2
) 𝑥
2

+ (1 + 𝐾
1
𝐾
2
) 𝑥
1d + (𝐾1 + 𝐾2) 𝑥̇1d + 𝑥̈1d − 𝑑̂.

(23)

Then, the dynamics can be rewritten as

𝑥̇
2
= − (1 + 𝐾

1
𝐾
2
) 𝑥
1
− (𝐾
1
+ 𝐾
2
) 𝑥
2

+ (1 + 𝐾
1
𝐾
2
) 𝑥
1d + (𝐾1 + 𝐾2) 𝑥̇1d + 𝑥̈1d

+ 𝐷 (𝑥, 𝑡) − 𝑑̂.

(24)

For the system state defined as 𝑥 = [𝑥
1
𝑥
2
]
T, the

following differential equation can be obtained:

𝑥̇ = 𝐴
1
𝑥 + 𝐵
1
[(1 + 𝐾

1
𝐾
2
) 𝑥
1d + (1 + 𝐾1 + 𝐾2) 𝑥̇1d

+ 𝑑
1
+ 𝑑
2
(𝑡) + 𝑓 − 𝑑̂] ,

(25)

where

𝐴
1
= [

0 1

− (1 + 𝐾
1
𝐾
2
) − (𝐾

1
+ 𝐾
2
)
] ,

𝐵
1
= [

0

1
] .

(26)

For the inner-loop observer, the state-space equation is
established as

𝑧̇ = 𝐴
2
𝑧 + 𝐵
2
𝐷 (𝑥, 𝑡) ,

𝑑̂ = 𝐶
2
𝑧,

(27)

where 𝑧 is the system state and (𝐴
2
, 𝐵
2
, 𝐶
2
) and 𝑧 depend on

the structure of low-pass filter𝑄(𝑠). (𝐴
2
, 𝐵
2
, 𝐶
2
) is minimum

implementation, (𝐴
2
, 𝐵
2
) is controllable, and (𝐴

2
, 𝐶
2
) is

observable. Since 𝑄(𝑠) ∈ 𝑅𝐻
∞
, 𝐴
2
is a Hurwitz matrix.
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For the overall closed-loop system, define the generalized
state 𝜉 = [𝑥T 𝑧

T
]
T; according to (25) and (27), the state-space

equation can be obtained in

𝜉̇ = [

𝐴
1
−𝐵
1
𝐶
2

0 𝐴
2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

𝜉 + [

𝐵
1

𝐵
2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

(𝑓 (𝑦) + 𝑑
2
(𝑡))

+ [

𝐵
1
𝑑
1
+ 𝐵
1
(1 + 𝐾

1
𝐾
2
) 𝑥
1d + 𝐵1 (𝐾1 + 𝐾2) 𝑥̇1d + 𝐵1𝑥̈1d

𝐵
2
𝑑
1

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟

𝑦 = [

𝐼
2×2

0

0 𝐶
2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶

𝜉.

(28)

Since𝐴
1
and𝐴

2
are both Hurwitz matrices, we can easily

know that𝐴 is Hurwitz according to its definition.That is, for
any given positive definite symmetric matrix 𝑁, there exists
a positive definite symmetric matrix 𝑃 such that 𝑃𝐴 +𝐴

T
𝑃 =

−𝑁. The equilibrium point is

𝜉
0
= −𝐴
−1

𝐵𝑑
1
+
[
[

[

1 0

0 1

0 0

]
]

]

[

𝑥
1d

𝑥̇
1d
] . (29)

For 𝜉̃ = 𝜉 − 𝜉
0
, we have the following state equation:

̇̃
𝜉 = 𝐴𝜉̃ + 𝐵 (𝑓 (𝑦) + 𝑑

2
(𝑡)) ,

𝑦 = 𝐶 (𝜉̃ + 𝜉
0
) .

(30)

For the nonlinear function 𝑓, there exists a compact set
Ω such that

󵄩󵄩󵄩󵄩𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ,

𝛾 = sup
𝑦∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓 (𝑦)

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(31)

For the Lyapunov function defined as𝑉 = 𝜉̃
T
𝑃𝜉̃, its time-

derivative satisfies

𝑉̇ = −𝜉̃
T
𝑁𝜉̃ + 2𝜉̃

T
𝑃𝐵 (𝑓 (𝑦) + 𝑑

2
(𝑡)) ≤ − [𝜆min (𝑁)

− 2𝛾 ‖𝑃𝐵‖ ‖𝐶‖]
󵄩󵄩󵄩󵄩󵄩
𝜉̃
󵄩󵄩󵄩󵄩󵄩

2

+ 2 ‖𝑃𝐵‖ [
󵄩󵄩󵄩󵄩󵄩
𝐶𝜉̃
0

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑑2 (𝑡)

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩󵄩
𝜉̃
󵄩󵄩󵄩󵄩󵄩

≤ −[

[

𝜆min (𝑁) − 2𝛾 ‖𝑃𝐵‖ ‖𝐶‖

−

2 ‖𝑃𝐵‖ (
󵄩󵄩󵄩󵄩󵄩
𝐶𝜉̃
0

󵄩󵄩󵄩󵄩󵄩
+ 𝑑)

󵄩󵄩󵄩󵄩󵄩
𝜉̃
󵄩󵄩󵄩󵄩󵄩

]

]

󵄩󵄩󵄩󵄩󵄩
𝜉̃
󵄩󵄩󵄩󵄩󵄩

2

.

(32)

Consequently, the control error of system states and estima-
tion error of observer are locally UUB.

3.3. Parameters Optimization. Theorem 4 provides us with
the parameter range such that the closed-loop system isUUB.
However, it is very hard to determine the parameters directly.
In this section, a parameter optimization strategy of the low-
pass filter guaranteeing the robust stability is proposed.

The parameter of the low-pass filter 𝑄(𝑠) is influenced by
system uncertainties, parameters of the outer-loop controller,
and measurement noise. First, the observer is transformed as

𝑑̂ = −𝑄 (𝑠) V + 𝑠𝑄 (𝑠) 𝑥
2
= −𝑄 (𝑠)

⋅ [(1 + 𝐾
1
𝐾
2
) 𝑥
1d + (𝐾1 + 𝐾2) 𝑥̇1d + 𝑥̈1d − 𝑑̂]

+ 𝑄 (𝑠) [𝑠 + (𝐾
1
+ 𝐾
2
) +

(1 + 𝐾
1
𝐾
2
)

𝑠
] 𝑥
2
.

(33)

Then, (24) can be transformed as the following equivalent
structure:

[𝑠 + (𝐾
1
+ 𝐾
2
) +

(1 + 𝐾
1
𝐾
2
)

𝑠
] 𝑥
2

= (1 + 𝐾
1
𝐾
2
) 𝑥
1d + (𝐾1 + 𝐾2) 𝑥̇1d + 𝑥̈1d

+ 𝐷 (𝑥, 𝑡) − 𝑑̂.

(34)

The nominal model of equivalent system is

𝑃
Δ𝑛
(𝑠) =

𝑠

𝑠2 + (𝐾
1
+ 𝐾
2
) 𝑠 + (1 + 𝐾

1
𝐾
2
)
. (35)

Then, we mainly analyze the system uncertainty of the
equivalent system. The system uncertainty is defined as

𝑓 (𝑥
1
, 𝑥
2
) = −𝑠𝑀

Δ
(𝑥
1
) 𝑥
2
+ 𝐶
Δ
(𝑥
1
, 𝑥
2
) 𝑥
2

+ 𝐺
Δ
(𝑥
1
) .

(36)

By assuming that the system works in a compact set Ω
𝑥
, the

uncertainty can be linearized as

𝑓 (𝑥
1
, 𝑥
2
) = [−𝑠𝑀

Δ
(𝑥
1
) + 𝐶
Δ
(𝑥
1
, 𝑥
2
)

+ 𝑥
2

𝜕𝐶
Δ
(𝑥
1
, 𝑥
2
)

𝜕𝑥
2

]𝑥
2
+ [−𝑠𝑥

2

𝜕𝑀
Δ
(𝑥
1
)

𝜕𝑥
1

+ 𝑥
2

𝜕𝐶
Δ
(𝑥
1
, 𝑥
2
)

𝜕𝑥
1

+
𝜕𝐺
Δ
(𝑥
1
)

𝜕𝑥
1

]𝑥
1
.

(37)

Since 𝑠𝑥
1
= 𝑥
2
, the internal uncertainty satisfies the following

linear form:

𝑓 (𝑥
1
, 𝑥
2
) = − (𝐾

3
𝑠 + 𝐾
4
+
𝐾
4

𝑠
) 𝑥
2
, (38)

where
𝐾
3
= 𝑀
Δ
(𝑥
1
) ,

𝐾
4
= 𝑥
2

𝜕𝑀
Δ
(𝑥
1
)

𝜕𝑥
1

− 𝐶
Δ
(𝑥
1
, 𝑥
2
) − 𝑥
2

𝜕𝐶
Δ
(𝑥
1
, 𝑥
2
)

𝜕𝑥
2

𝐾
5
= −𝑥
2

𝜕𝐶
Δ
(𝑥
1
, 𝑥
2
)

𝜕𝑥
1

−
𝜕𝐺
Δ
(𝑥
1
)

𝜕𝑥
1

.

(39)



6 Mathematical Problems in Engineering

d̂

d

PΔ(s)

Q(s)

Q(s)

P−1
Δn (s)Q(s)

x2

Δ(s)

+

+

+

−

−

−

1

1 − Q(s)

2)ẋ1d(1 + K1 + K
(1 + K1K2)x1d +

Figure 2: Equivalent system transformation.

It is clear that the real plant𝑃
Δ
(𝑠) differs if different 𝑥

1
and

𝑥
2
are selected. Define the set of equivalent systems as

𝑃
Δ
(𝑠)

∈ {
𝑠

(𝐾
3
+ 1) 𝑠2 + (𝐾

1
+ 𝐾
2
+ 𝐾
4
) 𝑠 + (1 + 𝐾

1
𝐾
2
+ 𝐾
5
)
,

(𝑥
1
, 𝑥
2
) ∈ Ω
𝑥
} .

(40)

At this time, the equivalent system can be represented
as the form in Figure 2. For the set of equivalent systems
and the nominal plant, define the upper bound of the system
uncertainty as

Δ (𝑗𝜔) ≥
𝑃
Δ
(𝑗𝜔) − 𝑃

Δ𝑛
(𝑗𝜔)

𝑃
Δ𝑛
(𝑗𝜔)

, ∀𝜔, (41)

where scalar 𝜔 denote frequency. From small gain theory, the
sufficient condition of robust stability is

‖𝑄 (𝑠) Δ (𝑠)‖
∞
< 1. (42)

Then, the optimization problem can be given as

max 𝛾,

s.t. min
𝑄(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝛾𝑊
1
(𝑠) ⋅ (1 − 𝑄 (𝑠))

𝑊
2
(𝑠) ⋅ 𝑄 (𝑠)

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

< 1,

(43)

where 𝑊
1
(𝑠) is a stable weighting function that reflects

frequency spectrum of disturbances at low frequencies.
Weighting function 𝑊

2
(𝑠) satisfies 𝑊

2
(𝑗𝜔) < Δ(𝑗𝜔), ∀𝜔.

It can be noticed that the selection of 𝑊
2
(𝑠) is influenced

by system uncertainties and outer-loop controller taken into
account; meanwhile, the measurement noise should also be
taken into account.

By defining the transfer function of virtual loop as 𝐿̃(𝑠) =
𝑄(𝑠)/(1−𝑄(𝑠)) = 𝑃̃(𝑠)𝐾̃(𝑠), the𝑄 filter design problem turns
to be a standard𝐻

∞
problem

max 𝛾,

s.t. min
(𝑠)∈𝑅𝐻

∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

[

𝛾𝑊
1
(𝑠) (1 + 𝐿̃ (𝑠))

−1

𝑊
2
(𝑠) 𝐿̃ (𝑠) (1 + 𝐿̃ (𝑠))

−1

]

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

< 1,

(44)

where 𝐿̃(𝑠) = 𝑃̃(𝑠)𝐾̃(𝑠) and 𝑃̃(𝑠) and 𝐾̃(𝑠) are the virtual
controlled objective and controller, respectively.The standard
state-space solution in 𝐻

∞
control can be applied to get the

optimal solution [32]. For a given virtual controlled objective
𝑃̃(𝑠), if we can acquire the optimal solution of the virtual
controller 𝐾̃(𝑠), then the optimal 𝑄 filter can be obtained as

𝑄 (𝑠) =
𝑃̃ (𝑠) 𝐾̃ (𝑠)

1 + 𝑃̃ (𝑠) 𝐾̃ (𝑠)

. (45)

Remark 5. If the weighting function𝑊
1
(𝑠) contains poles on

the imaginary axis, the augmented controlled objective of
equivalent𝐻

∞
control problemwill correspondingly contain

uncontrollable zeros on the imaginary axis. There is no
optimal solution for this 𝐻

∞
control problem. Thus, the

weighting function𝑊
2
(𝑠) should be transformed as follows:

(1) For the poles at 0
1

𝑠
󳨐⇒

1

𝑠 + 𝜀
. (46)

(2) For the conjugate poles on the imaginary axis

𝜔
2

𝑛

𝑠2 + 𝜔2
𝑛

󳨐⇒
𝜔
2

𝑛

𝑠2 + 2𝜀𝜔
𝑛
𝑠 + 𝜔2
𝑛

. (47)

𝜀 is a positive constant sufficiently small.

4. Experimental Verification

In this section, attitude tracking of a quadrotor aircraft
is implemented to verify the effectiveness of the proposed
control strategy.Themodified Rodrigues parameters (MRPs)
are applied to represent the attitude [33].The attitude tracking
error model is described as follows:

̇̃𝜎 = 𝐺 (𝜎̃) 𝜔̃

̇̃𝜔 = 𝐽
−1

[− (𝜔̃ + 𝑅̃𝜔d) 𝐽 (𝜔̃ + 𝑅̃𝜔d) + 𝐹𝑢]

− (𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d) ,

(48)

with the MRPs and angular velocity error defined as

𝜎̃ = 𝜎 ⊕ 𝜎
−1

d ,

𝜔̃ = 𝜔 − 𝑅̃𝜔d,
(49)
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Table 1: Parameters of the quadrotor aircraft.

Parameter Definition Value Error Unit
𝐶
𝑇

Coefficients of thrust 0.012 ±0.003
𝐶
𝑄

Coefficients of torque 0.93 × 10
−3

±0.2 × 10
−3

𝜌 Density of air 1.184 Kg⋅m−3

𝐴 Propeller’s disc area 0.0515 ±0.002 m2

𝑟 Propeller’s radius 0.128 ±0.001 m
𝑙 Rotor displacement from the center 0.25 ±0.01 m
𝐽
𝜙

Rotational inertia of roll axis 0.014 ±0.002 Kg⋅m2

𝐽
𝜃

Rotational inertia of pitch axis 0.014 ±0.002 Kg⋅m2

𝐽
𝜓

Rotational inertia of yaw axis 0.024 ±0.004 Kg⋅m2

𝜔
𝑇

Basic rotational speed of the rotor 215 ±5 rad/s

where 𝜎, 𝜔, and 𝐽 are MRPs, angular velocity, and the inertia
matrix, respectively. 𝐺(𝜎) is a nonsingular matrix defined
in [33]. 𝜎−1d is known as inverse of 𝜎d, which is extracted
as 𝜎−1d = −𝜎d, and 𝑅̃ = 𝑅𝑅

T
d is known as the error

of attitude transition matrix. The operator ⊕ denotes the
production of MRPs. The control input is defined as 𝑢 =

[𝜔
𝜙
𝜔
𝜃
𝜔
𝜓
]
T. Then, the rotational speeds of each propeller

are

𝜔
1
= 𝜔
𝑇
+ 𝜔
𝜃
+ 𝜔
𝜓
,

𝜔
2
= 𝜔
𝑇
+ 𝜔
𝜙
− 𝜔
𝜓
,

𝜔
3
= 𝜔
𝑇
− 𝜔
𝜃
+ 𝜔
𝜓
,

𝜔
4
= 𝜔
𝑇
− 𝜔
𝜙
− 𝜔
𝜓
,

(50)

and by assuming that the value of 𝑢 is smaller than that of 𝜔
𝑇
,

we finally get the matrix 𝐹 as

𝐹 = diag (4𝐶
𝑇
𝜌𝐴𝑟
2

𝑙𝜔
𝑇
, 4𝐶
𝑇
𝜌𝐴𝑟
2

𝑙𝜔
𝑇
, 8𝐶
𝑄
𝜌𝐴𝑟
3

𝜔
𝑇
) . (51)

The related parameter descriptions are shown in Table 1 [34].

4.1. Control System Design and Implementation. Assume that
the nominal inertia is 𝐽

0
and inertia error as Δ𝐽 = 𝐽 − 𝐽

0
.

Meanwhile, the nominal value of𝐹 is given as𝐹
0
, and its error

is defined as Δ𝐹 = 𝐹 − 𝐹
0
. Then, we can use the feedback

linearization

𝑢 = V + 𝐹−1
0
𝐿 (𝜔̃ + 𝑅̃𝜔d) vec (𝐽0)

+ 𝐹
−1

0
𝐽
0
(𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d) ,

(52)

to reduce the system dynamics to

𝐹
−1

0
𝐽
0

̇̃𝜔 = V + 𝑑 + 𝑓, (53)

where the definitions of the operators 𝐿(⋅) and vec(⋅) satisfy
𝐿(𝜔̃ + 𝑅̃𝜔d)vec(𝐽0) = (𝜔̃ + 𝑅̃𝜔d) × 𝐽

0
(𝜔̃ + 𝑅̃𝜔d) and

operator vec(⋅) is a vector that contains all the components
of the symmetric square matrix. The external disturbance

𝑑 satisfies ‖𝑑‖ ≤ 𝑑. The internal uncertainty is defined
as

𝑓

= − [𝛿 ̇̃𝜔 + 𝐿 (𝜔̃ + 𝑅̃𝜔d) 𝛿
∗

+ 𝛿 (𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d)] ,
(54)

where 𝛿 ≜ (𝐹𝐹
0
)
−1

(𝐹
0
Δ𝐽 − Δ𝐹𝐽

0
).

By substituting (53) into (54), we have

𝑓 = (𝐼
3
+ 𝛿𝐽
−1

0
𝐹
0
)
−1

[−𝛿𝐽
−1

0
𝐹
0
(V + 𝑑)

− 𝐿 (𝜔̃ + 𝑅̃𝜔d) 𝛿
∗

− 𝛿 (𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d)] .

(55)

Since ‖𝑅̃‖, 𝜔d, and 𝜔̇d are all bounded and control input V
can be rewritten into the form of state feedback, the internal
uncertainty 𝑓 satisfies Assumption 3.

According to linearized model (53), the observer can be
designed as

𝑑̂ = −𝑄 (𝑠) V + 𝑠𝑄 (𝑠) 𝐹−1
0
𝐽
0
𝜔̃, (56)

and the backstepping controller is designed as

𝑢 = − (1 + 𝑘
1
𝑘
2
) 𝜎̃ − (𝑘

2
+ 𝐹
−1

0
𝐽
0
𝑘
1
𝐺 (𝜎̃)) 𝜔̃ − 𝑑̂

+ 𝐹
−1

0
𝐿 (𝜔̃ + 𝑅̃𝜔d) 𝐽

∗

0

+ 𝐹
−1

0
𝐽
0
(𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d) .

(57)

For the variable Ω̃ = 𝜔̃ + 𝑘
1
𝜎̃ and the Lyapunov function

defined as 𝑉rot = 2 ln(1 + 𝜎̃
T
𝜎̃) + (1/2)Ω̃

T
(𝐹
−1

0
𝐽
0
)Ω̃, we have

𝑉̇
2
≤ −𝜆min (𝑘1) ‖𝜎̃‖

2

− 𝜆min (𝑘2)
󵄩󵄩󵄩󵄩󵄩
Ω̃
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Ω̃
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
d̃󵄩󵄩󵄩󵄩󵄩 . (58)

For the controller in (57), the parameters are selected as
𝑘
1
= 1.5 and 𝑘

2
= 9.0; the system dynamics and expression of

uncertainty are given as follows:

[𝐹
−1

0
𝐽
0
𝑠 + (𝑘

2
+ 𝐹
−1

0
𝐽
0
𝑘
1
𝐺 (𝜎̃)) + (1 + 𝑘

1
𝑘
2
) 𝐺 (𝜎̃)

1

𝑠
]

⋅ 𝜔̃ = 𝑑 + 𝑓 − 𝑑̂,

𝑓 = − [𝛿 ̇̃𝜔 − 𝐿 (𝜔̃ + 𝑅̃𝜔d) 𝛿
∗

− 𝛿 (𝑅̃𝜔̇d − [𝜔̃×] 𝑅̃𝜔d)] .

(59)
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Figure 3: System uncertainties and weighting function constraint.

From the analysis in Section 3.3, we get the nominal
model of equivalent system as

𝑃
Δ𝑛
=

4𝑠

4𝐹
−1

0
𝐽
0
𝑠2 + (4𝑘

2
+ 𝐹
−1

0
𝐽
0
𝑘
1
) 𝑠 + (1 + 𝑘

1
𝑘
2
)
, (60)

while the equivalent system is shown as

𝑃
Δ
(𝑠)

=
4𝑠

(4𝐹
−1

0
𝐽
0
+ 𝛿) 𝑠2 + (4𝑘

2
+ 𝐹
−1

0
𝐽
0
𝑘
1
+ 4𝑘
3
) 𝑠 + (1 + 𝑘

1
𝑘
2
)
,

(61)

where 𝑘
3
= −(𝜕𝐿(𝜔̃ + 𝑅̃𝜔d)𝛿

∗

+ 𝛿(𝑅̃𝜔̇d − [𝜔̃×]𝑅̃𝜔d))/𝜕𝜔̃.
Consider that the structure of quadrotor is axially sym-

metric; the corresponding parameters of pitch and roll
axes are the same. Thus, weighting function 𝑊

2
(𝑠) can be

determined by pitch (roll) axis and yaw axis. The selection
of𝑊
2
(𝑠) should contain the system uncertainties with all the

parameters perturbation. It is also required that the designed
𝑄 filter has at least −30 dB attenuation against measurement
noise of gyroscope larger than 42Hz. Figure 3 shows the
frequency response of Δ(𝑠) according to the parameters per-
turbation. It is illustrated that, for all the possible parameters,
the weighting function satisfies 𝑊−1

2
(𝑠) ≤ Δ

𝜙
(𝑠), 𝑊−1

2
(𝑠) ≤

Δ
𝜓
(𝑠). Then, the optimized𝑄 filter is obtained while 𝛾 = 8.1:

𝑄 (𝑠) =
7.1𝑠 + 11.415

𝑠2 + 7.1𝑠 + 11.415
. (62)

4.2. Simulations. Numerical simulations are presented in
MATLAB/Simulink to illustrate the efficacy of the proposed
strategy. The simulation period is 5ms, the same as that in
experiments. We consider the parameters and their uncer-
tainties depicted in Table 1. The desired MRPs are given as

𝜎d1 = 0.1 sin(
𝜋𝑡

15
+
𝜋

2
) ,

𝜎d2 = 0.1 sin(
𝜋𝑡

15
−
𝜋

2
) ,

𝜎d3 = 0.1 sin(
𝜋𝑡

15
) ;

(63)

hence, from the kinematics of MRPs, we get

𝜔d = 𝐺
−1

(𝜎d) 𝜎̇d,

𝜔̇d = 𝐺
−1

(𝜎d) [𝜎̈d − 𝐺 (𝜎d, 𝜎̇d) 𝜔d] ,
(64)

where 𝐺(𝜎d, 𝜎̇d) is the time-derivative of 𝐺(𝜎d).
The external disturbances on the dynamics are as follows:

𝑑
1
= 0.1 sin(𝜋𝑡

2
) + 0.1 sin(𝜋𝑡

10
) + 0.3,

𝑑
2
= 0.1 sin(𝜋𝑡

2
) + 0.1 cos(𝜋𝑡

10
) + 0.4,

𝑑
3
= 0.1 sin(𝜋𝑡

2
) + 0.1 cos(𝜋𝑡

10
+
𝜋

4
) + 0.5,

(65)

which contains constant and sine components with both low
and high frequencies.

The measurement noise is taken into account in this
simulation. Here, we add the practical noise from the sensors
to the feedback channel. The initial condition is 𝜎(𝑡

0
) =

[0.1 0.15 0.05]
T, 𝜔(𝑡

0
) = [0 0 0]

T. Note that the controller
parameters are 𝑘

1
= 10 and 𝑘

2
= 0.5. Meanwhile,

a nonlinear feedback controller in (57) without 𝑑̂ and a
traditional DOB with first-order 𝑄 filter are also carried out
in this simulation to compare with the proposed strategy.
The bandwidth of traditional DOB is 15, which is selected
to be as large as possible to guarantee both disturbance
rejection performance and robustness against measurement
noise.

Figure 4 shows the tracking effect. It is illustrated that the
nonlinear feedback controller without DOB cannot suppress
the influence caused by internal uncertainties and external
disturbances. The compound disturbances acting on system
dynamics will cause an obvious tracking error. The approxi-
mation of compound disturbances in Figure 5 illustrates that
the proposed DOB can estimate the compound disturbances
successfully with noise of high frequency. Hence, with the
compensation of the estimating disturbances, the proposed
control strategy can enable the quadrotor to track the desired
MRPs with better performance in Figure 4. Comparing with
the proposed DOB, a traditional DOB is presented and the
tracking errors of these two methods are shown in Figure 6.
With the high frequency measurement noise, the bandwidth
of traditional DOB cannot be selected to be larger than
15, since the high gain will enlarge the influence caused by
measurement noise and diverge the control system. However,
the proposed DOB has stronger suppression ability against
disturbances with low frequency, as well as attenuation
against noise with high frequency. Consequently, the tracking
performance with the proposed DOB is better than that with
traditional DOB.The control performances of these methods
are given specifically in Table 2. The control structure with
a DOB has higher tracking accuracy. The disturbances esti-
mating error of the proposed robust DOB is less than that of
traditional DOB.
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Figure 4: Tracking effects of desired attitude with and without DOB.
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Figure 5: Approximation effect of disturbances.

Table 2: Comparison of control performances in simulations (RMS
error).

𝜎̃ 𝜔̃ d̃
Without DOB 0.04 0.05 Null
Traditional DOB 1.85 × 10

−2 0.12 rad/s 0.17N⋅m
Proposed DOB 1.24 × 10

−2 0.07 rad/s 0.13N⋅m

4.3. Experimental Results. In the experiment, the desired
attitude is expressed as follows:

𝜎d1 = −0.03 sin(
𝜋

5
𝑡) ,

𝜎d2 = 0.03 cos(
𝜋

5
𝑡) ,

(66)

and 𝜎d3 retains 0. 𝜔d and 𝜔̇d are acquired by (64).
It can be illustrated in (53) and (54) that even if there are

no external disturbances, the existing internal uncertainties
will also bring the system with an equivalent disturbance
𝑓. In Figure 7, we find that, with the action of DOB, the

Table 3: Comparison of control performances (RMS error).

𝜎
1

𝜎
2

𝜎
3

Traditional DOB 1.4 × 10
−3

1.6 × 10
−3

2.2 × 10
−3

Proposed DOB 7.9 × 10
−4

7.1 × 10
−4

2.9 × 10
−4

tracking error caused by internal uncertainties can be sup-
pressed successfully. At time of 75 and 90 seconds, external
disturbances are exerted on the quadrotor. The proposed
DOB can estimate and eliminate the disturbance quickly and
accurately. Also, from the enlarged view of Figure 7, we find
the convergence speed of the DOB is less than 2 seconds.The
attitude error is expressed in Figure 8 and the comparison of
the attitude tracking performances is shown in Table 3. The
attitude errors are expressed in Figure 8 and the comparison
of the attitude tracking performances is shown in Table 3.
The control accuracy ismuch higher with the proposedDOB.
Since there exists property of coupling among the 3 axes of the
attitude, when we exert external disturbances on the axes of
pitch or roll, it will in turn affect the other two axes. However,
the proposed DOB can also suppress the influence caused
by coupling property. Experimental results validate that the
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Figure 6: Tracking error comparison of the proposed DOB and
traditional DOB.

proposed control strategy can obtain strong disturbance
rejection performance against external disturbances aswell as
good tracking performance.The robust stability of the closed-
loop system can be guaranteed based on the proposed DOB
optimization strategy.
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Figure 7: Tracking effect of MRPs with DOB.

5. Conclusions

This paper proposes a disturbance rejection control strat-
egy for nonlinear systems with robust DOB. First, a DOB
with partial feedback linearization and a low-pass filter
is proposed for nonlinear dynamic model under relaxed
restrictions of the generalized disturbance. Then, the outer-
loop backstepping controller is designed for desired tracking
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Figure 8: Tracking error of the proposed method.

performance. By analyzing the influence of outer controller
on the inner-loop observer parameter, the robust stability
constraint condition is proposed to guarantee the robust
stability of the closed-loop system. Experimental results on
an aircraft show that the proposed strategy can increase
the control accuracy effectively. The optimized DOB can
eliminate the external disturbances effectively to increase
the control accuracy. Meanwhile, the proposed parameters
optimization strategy can guarantee the robust stability of the
closed-loop system.
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