220 research outputs found

    Energy-Efficient Transmission Scheduling with Strict Underflow Constraints

    Full text link
    We consider a single source transmitting data to one or more receivers/users over a shared wireless channel. Due to random fading, the wireless channel conditions vary with time and from user to user. Each user has a buffer to store received packets before they are drained. At each time step, the source determines how much power to use for transmission to each user. The source's objective is to allocate power in a manner that minimizes an expected cost measure, while satisfying strict buffer underflow constraints and a total power constraint in each slot. The expected cost measure is composed of costs associated with power consumption from transmission and packet holding costs. The primary application motivating this problem is wireless media streaming. For this application, the buffer underflow constraints prevent the user buffers from emptying, so as to maintain playout quality. In the case of a single user with linear power-rate curves, we show that a modified base-stock policy is optimal under the finite horizon, infinite horizon discounted, and infinite horizon average expected cost criteria. For a single user with piecewise-linear convex power-rate curves, we show that a finite generalized base-stock policy is optimal under all three expected cost criteria. We also present the sequences of critical numbers that complete the characterization of the optimal control laws in each of these cases when some additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two users. We conclude with a discussion of methods to identify implementable near-optimal policies for the most general case of M users.Comment: 109 pages, 11 pdf figures, template.tex is main file. We have significantly revised the paper from version 1. Additions include the case of a single receiver with piecewise-linear convex power-rate curves, the case of two receivers, and the infinite horizon average expected cost proble

    Delay-Optimal Buffer-Aware Probabilistic Scheduling with Adaptive Transmission

    Full text link
    Cross-layer scheduling is a promising way to improve Quality of Service (QoS) given a power constraint. In this paper, we investigate the system with random data arrival and adaptive transmission. Probabilistic scheduling strategies aware of the buffer state are applied to generalize conventional deterministic scheduling. Based on this, the average delay and power consumption are analysed by Markov reward process. The optimal delay-power tradeoff curve is the Pareto frontier of the feasible delay-power region. It is proved that the optimal delay-power tradeoff is piecewise-linear, whose vertices are obtained by deterministic strategies. Moreover, the corresponding strategies of the optimal tradeoff curve are threshold-based, hence can be obtained by a proposed effective algorithm. On the other hand, we formulate a linear programming to minimize the average delay given a fixed power constraint. By varying the power constraint, the optimal delay-power tradeoff curve can also be obtained. It is demonstrated that the algorithm result and the optimization result match each other, and are further validated by Monte-Carlo simulation.Comment: 6 pages, 4 figures, accepted by IEEE ICCC 201

    Optimal Quality-of-Service Scheduling for Energy-Harvesting Powered Wireless Communications

    Get PDF
    XiaojingChen, Wei Ni, Xin Wang, YichuangSun, “Optimal Quality-of-Service Scheduling for Energy-Harvesting Powered Wireless Communications”, IEEE Transactions on Wireless Communications, Vol. 15 (5): 3269-3280, January 2016. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, a new dynamic string tautening algorithm is proposed to generate the most energy-efficient off-line schedule for delay-limited traffic of transmitters with non-negligible circuit power. The algorithm is based on two key findings that we derive through judicious convex formulation and resultant optimality conditions, specifies a set of simple but optimal rules, and generates the optimal schedule with a low complexity of O(N2) in the worst case. The proposed algorithm is also extended to on-line scenarios, where the transmit schedule is generated on-the-fly. Simulation shows that the proposed algorithm requires substantially lower average complexity by almost two orders of magnitude to retain optimality than general convex solvers. The effective transmit region, specified by the tradeoff of the data arrival rate and the energy harvesting rate, is substantially larger using our algorithm than using other existing alternatives. Significantly more data or less energy can be supported in the proposed algorithm.Peer reviewedFinal Accepted Versio

    From Sleeping to Stockpiling: Energy Conservation via Stochastic Scheduling in Wireless Networks.

    Full text link
    Motivated by the need to conserve energy in wireless networks, we study three stochastic dynamic scheduling problems. In the first problem, we consider a wireless sensor node that can turn its radio off for fixed durations of time in order to conserve energy. We formulate finite horizon expected cost and infinite horizon average expected cost problems to model the fundamental tradeoff between packet delay and energy consumption. Through analysis of the dynamic programming equations, we derive structural results on the optimal policies for both formulations. For the infinite horizon problem, we identify a threshold decision rule to determine the optimal control action when the queue is empty. In the second problem, we consider a sensor node with an inaccurate timer in the ultra-low power sleep mode. The loss in timing accuracy in the sleep mode can result in unnecessary energy consumption from two unsynchronized devices trying to communicate. We develop a novel method for the node to calibrate its timer: occasionally waking up to measure the ambient temperature, upon which the timer speed depends. The objective is to dynamically schedule a limited number of temperature measurements in a manner most useful to improving the accuracy of the timer. We formulate optimization problems with both continuous and discrete underlying time scales, and implement a numerical solution to an equivalent reduction of the second formulation. In the third problem, we consider a single source transmitting data to one or more receivers over a shared wireless channel. Each receiver has a buffer to store received packets before they are drained. The transmitter's goal is to minimize total power consumption by exploiting the temporal and spatial variation of the channel, while preventing the receivers' buffers from emptying. In the case of a single receiver, we show that modified base-stock and finite generalized base-stock policies are optimal when the power-rate curves are linear and piecewise-linear convex, respectively. We also present the sequences of critical numbers that complete the characterizations of the optimal policies when additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two receivers.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/77839/1/dishuman_1.pd

    multimedia transmission over wireless networks: performance analysis and optimal resource allocation

    Get PDF
    In recent years, multimedia applications such as video telephony, teleconferencing, and video streaming, which are delay sensitive and bandwidth intensive, have started to account for a significant portion of the data traffic in wireless networks. Such multimedia applications require certain quality of service (QoS) guarantees in terms of delay, packet loss, buffer underflows and overflows, and received multimedia quality. It is also important to note that such requirements need to be satisfied in the presence of limited wireless resources, such as power and bandwidth. Therefore, it is critical to conduct a rigorous performance analysis of multimedia transmissions over wireless networks and identify efficient resource allocation strategies. Motivated by these considerations, in the first part of the thesis, performance of hierarchical modulation-based multimedia transmissions is analyzed. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, two different types of wireless networks are considered. Specifically, multimedia transmission over cognitive radio networks and device-to-device (D2D) cellular wireless networks is addressed. Closed-form bit error rate (BER) expressions are derived and optimal power control strategies are determined. Next, throughput and optimal resource allocation strategies are studied for multimedia transmission under delay QoS and energy efficiency (EE) constraints. A Quality-Rate (QR) distortion model is employed to measure the quality of received video in terms of peak signal-to-noise ratio (PSNR) as a function of video source rate. Effective capacity (EC) is used as the throughput metric under delay QoS constraints. In this analysis, four different wireless networks are taken into consideration: First, D2D underlaid wireless networks are addressed. Efficient transmission mode selection and resource allocation strategies are analyzed with the goal of maximizing the quality of the received video at the receiver in a frequency-division duplexed (FDD) cellular network with a pair of cellular users, one base station and a pair of D2D users under delay QoS and EE constraints. A full-duplex communication scenario with a pair of users and multiple subchannels in which users can have different delay requirements is addressed. Since the optimization problem is not concave or convex due to the presence of interference, optimal power allocation policies that maximize the weighted sum video quality subject to total transmission power level constraint are derived by using monotonic optimization theory. The optimal scheme is compared with two suboptimal strategies. A full-duplex communication scenario with multiple pairs of users in which different users have different delay requirements is addressed. EC is used as the throughput metric in the presence of statistical delay constraints since deterministic delay bounds are difficult to guarantee due to the time-varying nature of wireless fading channels. Optimal resource allocation strategies are determined under bandwidth, power and minimum video quality constraints again using the monotonic optimization framework. A broadcast scenario in which a single transmitter sends multimedia data to multiple receivers is considered. The optimal bandwidth allocation and the optimal power allocation/power control policies that maximize the sum video quality subject to total bandwidth and minimum EE constraints are derived. Five different resource allocation strategies are investigated, and the joint optimization of the bandwidth allocation and power control is shown to provide the best performance. Tradeoff between EE and video quality is also demonstrated. In the final part of the thesis, power control policies are investigated for streaming variable bit rate (VBR) video over wireless links. A deterministic traffic model for stored VBR video, taking into account the frame size, frame rate, and playout buffers is considered. Power control and the transmission mode selection with the goal of maximizing the sum transmission rate while avoiding buffer underflows and overflows under transmit power constraints is exploited in a D2D wireless network. Another system model involving a transmitter (e.g., a base station (BS)) that sends VBR video data to a mobile user equipped with a playout buffer is also adopted. In this setting, both offline and online power control policies are considered in order to minimize the transmission power without playout buffer underflows and overflows. Both dynamic programming and reinforcement learning based algorithms are developed

    Optimal harvest-use-store design for delay-constrained energy harvesting wireless communications

    Get PDF
    Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes
    • …
    corecore