8 research outputs found

    Exploring Fuzzy Logic and Random Forest for Car Drivers’ Fuel Consumption Estimation in IoT-Enabled Serious Games

    Get PDF
    Internet of Things (IoT) technologies have a promising potential for instructional serious games related to field operations. We explore IoT’s potential for serious games in the automotive application domain to improve driving, choosing fuel consumption (FC) as an indicator of the driver performance as it is strongly influenced by driving styles and can be quantified and validated. We propose a FC prediction model, exploiting three vehicular signals that are controllable by the driver (player), that are able to provide direct coaching feedback to the driver and are easily available through the widely available On-Board Diagnostic-II (OBD-II) vehicular interface: throttle position, engine rotation speed (RPM) and car speed. We processed the data with two techniques, random forest (RF) and fuzzy logic (FL). Implementation, training and testing of both models, were made using the enviroCar database which freely provides a significant amount of naturalistic drive data. Results show that RF achieves quite a higher estimation accuracy, which complements FL’s ability to provide driver with easily understandable feedback. We thus argue that the combination of the two models can supply valuable information usable by game designers in the automotive environment

    Using a Smart City IoT to Incentivise and Target Shifts in Mobility Behaviour-Is It a Piece of Pie?

    Get PDF
    The work presented in this paper is a central part of the research and development in the SUNSET project (contract No. 270228), supported by the 7th Framework Research Program funded by the European Commission. The authors also acknowledge the support of other SUNSET consortium members in helping to create and evaluate the SUNSET tripzoom system

    A Fuzzy Logic Module to Estimate a Driver’s Fuel Consumption for Reality-Enhanced Serious Games

    Get PDF
    Reality-enhanced gaming is an emerging serious game genre, that could contextualize a game within its real instruction-target environment. A key module for such games is the evaluator, that senses a user performance and provides consequent input to the game. In this project, we have explored an application in the automotive field, estimating driver performance in terms of fuel consumption, based on three key vehicular signals, that are directly controllable by the driver: throttle position sensor (TPS), engine rotation speed (RPM) and car speed. We focused on Fuzzy Logic, given its ability to embody expert knowledge and deal with incomplete information availability. The fuzzy models – that we iteratively defined based on literature expertise and data analysis – can be easily plugged into a reality-enhanced gaming architecture. We studied four models with all the possible combinations of the chosen variables (TPS and RPM; RPM and speed; TPS and speed; TPS, speed and RPM). Input data were taken from the enviroCar database, and our fuel consumption predictions compared with their estimated values. Results indicate that the model with the three inputs outperforms the other models giving a higher coefficient of determination (R2), and lower error. Our study also shows that RPM is the most important fuel consumption predictor, followed by TPS and speed

    Energy-Efficient Real-Time Human Mobility State Classification Using Smartphones

    No full text

    User Mobility Detection using Foot Force Sensors and Mobile Phone GPS.

    Get PDF
    PhDA user (or human) mobility context is defined as a type of user context that describes a type of whole body posture (e.g., standing versus sitting) and/or a type of travel or transportation mode (e.g., walking, cycling, travel by bus, etc). Such a context can be derived from low-level sensor data and spatial contexts, including location coordinates, 3D-orientation, direction (with respect to magnetic north), velocity and acceleration. Different value-added services can be adapted to users’ mobility contexts such as assessing how eco-friendly our travel is, and adapting travel information services such as maps to different transportation modes. Current sensor-based methods for user mobility detection have several key limitations: narrow range of recognition, coarse user mobility recognition capability, and low recognition accuracy. In this thesis, a new Foot-Force and GPS (FF+GPS) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with mobile phone GPS. The novelty of this approach is that it provides a more comprehensive recognition capability in terms of reliably recognising various fine-grained human postures and transportation modes. In addition, by comparing the new FF+GPS method with both an accelerometer (ACC) method (62% accuracy) and an ACC+GPS based method (70% accuracy) as baseline methods, it obtains a higher accuracy (90%) with less computational complexity, when tested on a dataset obtained from ten individuals. In addition, the new FF+GPS method has been further extended and evaluated. More specifically, the trade-off between the computation and resources needed to support lower versus higher number of features and sensors has been investigated. The improved FF+GPS method reduced the number of classification features from 31 to 12, reduced the number of FF sensors from 8 to 4, and reduced the use of GPS in mobility activity recognition

    Eco-friendly Naturalistic Vehicular Sensing and Driving Behaviour Profiling

    Get PDF
    PhD ThesisInternet of Things (IoT) technologies are spurring of serious games that support training directly in the field. This PhD implements field user performance evaluators usable in reality-enhanced serious games (RESGs) for promoting fuel-efficient driving. This work proposes two modules – that have been implemented by processing information related to fuel-efficient driving – to be employed as real-time virtual sensors in RESGS. The first module estimates and assesses instantly fuel consumption, where I compared the performance of three configured machine learning algorithms, support vector regression, random forest and artificial neural networks. The experiments show that the algorithms have similar performance and random forest slightly outperforms the others. The second module provides instant recommendations using fuzzy logic when inefficient driving patterns are detected. For the game design, I resorted to the on-board diagnostics II standard interface to diagnostic circulating information on vehicular buses for a wide diffusion of a game, avoiding sticking to manufacturer proprietary solutions. The approach has been implemented and tested with data from the enviroCar server site. The data is not calibrated for a specific car model and is recorded in different driving environments, which made the work challenging and robust for real-world conditions. The proposed approach to virtual sensor design is general and thus applicable to various application domains other than fuel-efficient driving. An important word of caution concerns users’ privacy, as the modules rely on sensitive data, and provide information that by no means should be misused
    corecore