8 research outputs found

    Layerwise Noise Maximisation to Train Low-Energy Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) depend on the storage of a large number of parameters, which consumes an important portion of the energy used during inference. This paper considers the case where the energy usage of memory elements can be reduced at the cost of reduced reliability. A training algorithm is proposed to optimize the reliability of the storage separately for each layer of the network, while incurring a negligible complexity overhead compared to a conventional stochastic gradient descent training. For an exponential energy-reliability model, the proposed training approach can decrease the memory energy consumption of a DNN with binary parameters by 3.3×\times at isoaccuracy, compared to a reliable implementation.Comment: To be presented at AICAS 202

    On the resilience of deep learning for reduced-voltage FPGAs

    Get PDF
    Deep Neural Networks (DNNs) are inherently computation-intensive and also power-hungry. Hardware accelerators such as Field Programmable Gate Arrays (FPGAs) are a promising solution that can satisfy these requirements for both embedded and High-Performance Computing (HPC) systems. In FPGAs, as well as CPUs and GPUs, aggressive voltage scaling below the nominal level is an effective technique for power dissipation minimization. Unfortunately, bit-flip faults start to appear as the voltage is scaled down closer to the transistor threshold due to timing issues, thus creating a resilience issue.This paper experimentally evaluates the resilience of the training phase of DNNs in the presence of voltage underscaling related faults of FPGAs, especially in on-chip memories. Toward this goal, we have experimentally evaluated the resilience of LeNet-5 and also a specially designed network for CIFAR-10 dataset with different activation functions of Rectified Linear Unit (Relu) and Hyperbolic Tangent (Tanh). We have found that modern FPGAs are robust enough in extremely low-voltage levels and that low-voltage related faults can be automatically masked within the training iterations, so there is no need for costly software-or hardware-oriented fault mitigation techniques like ECC. Approximately 10% more training iterations are needed to fill the gap in the accuracy. This observation is the result of the relatively low rate of undervolting faults, i.e., <0.1%, measured on real FPGA fabrics. We have also increased the fault rate significantly for the LeNet-5 network by randomly generated fault injection campaigns and observed that the training accuracy starts to degrade. When the fault rate increases, the network with Tanh activation function outperforms the one with Relu in terms of accuracy, e.g., when the fault rate is 30% the accuracy difference is 4.92%.The research leading to these results has received funding from the European Unions Horizon 2020 Programme under the LEGaTO Project (www.legato-project.eu), grant agreement n 780681.Peer ReviewedPostprint (author's final draft

    FeFET-based Binarized Neural Networks Under Temperature-dependent Bit Errors

    Get PDF
    Ferroelectric FET (FeFET) is a highly promising emerging non-volatile memory (NVM) technology, especially for binarized neural network (BNN) inference on the low-power edge. The reliability of such devices, however, inherently depends on temperature. Hence, changes in temperature during run time manifest themselves as changes in bit error rates. In this work, we reveal the temperature-dependent bit error model of FeFET memories, evaluate its effect on BNN accuracy, and propose countermeasures. We begin on the transistor level and accurately model the impact of temperature on bit error rates of FeFET. This analysis reveals temperature-dependent asymmetric bit error rates. Afterwards, on the application level, we evaluate the impact of the temperature-dependent bit errors on the accuracy of BNNs. Under such bit errors, the BNN accuracy drops to unacceptable levels when no countermeasures are employed. We propose two countermeasures: (1) Training BNNs for bit error tolerance by injecting bit flips into the BNN data, and (2) applying a bit error rate assignment algorithm (BERA) which operates in a layer-wise manner and does not inject bit flips during training. In experiments, the BNNs, to which the countermeasures are applied to, effectively tolerate temperature-dependent bit errors for the entire range of operating temperature

    Energy-Efficient Neural Network Acceleration in the Presence of Bit-Level Memory Errors

    No full text
    corecore