5 research outputs found

    Enlightening Network Lifetime based on Dynamic Time Orient Energy Optimization in Wireless Sensor Network

    Get PDF
    Mobile Ad-hoc Networks (MANET) are a set of Large-scale infrastructure and mobile device networks that build themselves without centralized control to provide various services through mobile. However, the quality of service of MANET is highly dependent on multiple parameters. Many routing schemes in literature use hop count, mobility speed, direction, etc. Similarly, the flow-based approach chooses long routes, which increases latency and reduces throughput efficiency. However, not all methods work well with all Quality of Service (QoS) parameters. To introduce a Dynamic Time Orient Energy Optimization (DTOEO) algorithm to construct the energy-based tree formation to achieve the minimum energy consumption network. Energy-based Dynamic Tree Routing to provide higher energy node and shortest route estimation that help to better transmission quality. In this proposed DTOEO method, perform three stages, there are i). Source node discovery process, ii). Time-orient density estimation, and iii). Energy-based Dynamic Tree Routing. In this stage, orient density estimation evaluates the data transmission size for each window period. To assess the consuming energy in the overall network. The proposed method of performance evaluation using various QoS matrices and its comparison to the existing process provides better performance

    Implantation modified deep echo state neural networks and improve harmony clustering algorithm for optimal and energy efficient path in mobile sink

    Get PDF
    Wireless network sensors based on the mobile sink are regarded to be a common network and used in various fields in the last few years, they are thought to be easy to use, but contain the problem of energy loss and are affected by an energy hole problem, as it depends on batteries. This paper proposes a solution to this problem by using an innovative objective function for a consistent distributing of cluster heads, the enhanced harmony search based routing protocols based on energy equilibrated node clustering protocol. In order to route the data packet among the sink and cluster heads, an enhanced modified deep echo state neural network is suggested. The efficiency of a projected integrated clustering and routing protocol has been investigated at 500 nodes, and the 96 per cent success data for the proposed algorithm is given using the average energy consumption, send and receive packaged and optimum numbers of CH
    corecore