22 research outputs found

    Distance Based Power Control for D2D Communication in LTE-Advanced Networks

    Get PDF
    Device to device communication systems places a very important role in handling both voice and data services efficiently in LTE-A networks. Power control techniques that we adopt for efficient D2D communication becomes a challenging issue. D2D and cellular signals under the same network may result in In-band Emission Interference (IEI). This degrades discovery range which result in loss of energy efficiency, throughput and hence increases the power requirement in both uplink and downlink transmissions. In this paper, a power control algorithm is introduced which greatly helps in saving power in LTE-Advanced networks for D2D communication. Power calculation mechanisms for D2D users and cellular users are shown separately. Based on mode selection, transmit and receive power requirements are evaluated to obtain the preset Quality of Service (QoS) parameters. The simulation results presented in the proposed method demonstrates the effectiveness of power consumption in LTE-Advanced networks for device to device communication

    Robust Transmit Beamforming for Underlay D2D Communications on Multiple Channels

    Get PDF
    Author´s accepted manuscript (postprint).© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.publishedVersio

    Resource Allocation and Mode Selection in 5G Networks Based on Energy Efficient Game Theory Approach

    Get PDF
    With the advent of next-generation cellular networks, energy efficiency is becoming increasingly important. To tackle this issue, this paper investigates energy efficiency in D2D-enabled heterogeneous cellular networks. Boosting the longterm energy efficiency of wireless 5G communication networks is being explored through mode selection and resource allocation. The study proposed a three-stage process for energy-efficient mode selection and resource allocation. The process starts with cellular users who switch to D2D emitting a beacon and cellular users within close proximity reacting to it. A proposed auction mechanism will be enacted inside the group in the second state ( in this paper, the group size will be four). Next, each cellular user was classified according to SINR values, distance, and battery life, so that they could dynamically transition between standard cellular mode and D2D mode. For stage three, direct-hop hybrid D2D communication, we developed a TAMM double auction game model that efficiently splits resources. To identify the true bidders in our game model, we compute the median and mode values of the ASK and BID values received by both seller and buyer cellular users. A simulation study shows that the proposed method is energy-efficient in a heterogeneous network enabled by D2D

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio
    corecore