5 research outputs found

    Energy-Efficient Communication over the Unsynchronized Gaussian Diamond Network

    Full text link
    Communication networks are often designed and analyzed assuming tight synchronization among nodes. However, in applications that require communication in the energy-efficient regime of low signal-to-noise ratios, establishing tight synchronization among nodes in the network can result in a significant energy overhead. Motivated by a recent result showing that near-optimal energy efficiency can be achieved over the AWGN channel without requiring tight synchronization, we consider the question of whether the potential gains of cooperative communication can be achieved in the absence of synchronization. We focus on the symmetric Gaussian diamond network and establish that cooperative-communication gains are indeed feasible even with unsynchronized nodes. More precisely, we show that the capacity per unit energy of the unsynchronized symmetric Gaussian diamond network is within a constant factor of the capacity per unit energy of the corresponding synchronized network. To this end, we propose a distributed relaying scheme that does not require tight synchronization but nevertheless achieves most of the energy gains of coherent combining.Comment: 20 pages, 4 figures, submitted to IEEE Transactions on Information Theory, presented at IEEE ISIT 201

    Communication Systems Design for Downhole Acoustic Telemetry

    Get PDF
    The goal of this dissertation is to design a reliable and efficient communication system for downhole acoustic communication. This system is expected to operate in two different modes. A broadband high data rate mode in case of transmission of an image or a video file and a narrowband low data rate mode in case of transmission of sensor readings. This communication system functions by acoustic vibration of the pipes and uses them as the channel instead of installing long cables in areas that are hard to reach. However, this channel has unique characteristics where it exhibits several passbands and stopbands across the frequency spectrum. The communication system is expected to get around those challenges in both modes of operation. In the broadband case, the system uses Orthogonal Frequency Division Multiplexing to transmit data across multiple orthogonal frequencies spanning multiple passbands combined with an error-correction code to recover some of the losses caused by the channel. In the narrowband case, a short packet is transmitted at a low data rate where the signal spectrum can fit inside one passband. However, transmitting short packets induces a new synchronization problem. This dissertation investigates and explores in detail the problem of synchronization on short packets where each synchronization stage is examined. A simple algorithm that exploits the presence of error-correction codes is proposed for the frame synchronization stage and demonstrated to approach the optimal solution. Then, all synchronization stages are combined in order to study the effect of propagated errors caused by imperfect synchronization from one stage to the next and what can be done in the design of the packet and the receiver structure to mitigate those losses. The resulting synchronization procedure is applied to the pipe strings and demonstrated to achieve desirable levels of performance with the assistance of equalization at the receiver

    Communication Systems Design for Downhole Acoustic Telemetry

    Get PDF
    The goal of this dissertation is to design a reliable and efficient communication system for downhole acoustic communication. This system is expected to operate in two different modes. A broadband high data rate mode in case of transmission of an image or a video file and a narrowband low data rate mode in case of transmission of sensor readings. This communication system functions by acoustic vibration of the pipes and uses them as the channel instead of installing long cables in areas that are hard to reach. However, this channel has unique characteristics where it exhibits several passbands and stopbands across the frequency spectrum. The communication system is expected to get around those challenges in both modes of operation. In the broadband case, the system uses Orthogonal Frequency Division Multiplexing to transmit data across multiple orthogonal frequencies spanning multiple passbands combined with an error-correction code to recover some of the losses caused by the channel. In the narrowband case, a short packet is transmitted at a low data rate where the signal spectrum can fit inside one passband. However, transmitting short packets induces a new synchronization problem. This dissertation investigates and explores in detail the problem of synchronization on short packets where each synchronization stage is examined. A simple algorithm that exploits the presence of error-correction codes is proposed for the frame synchronization stage and demonstrated to approach the optimal solution. Then, all synchronization stages are combined in order to study the effect of propagated errors caused by imperfect synchronization from one stage to the next and what can be done in the design of the packet and the receiver structure to mitigate those losses. The resulting synchronization procedure is applied to the pipe strings and demonstrated to achieve desirable levels of performance with the assistance of equalization at the receiver

    Energy-Efficient Communication in the Presence of Synchronization Errors

    No full text
    corecore