

COMMUNICATION SYSTEMS DESIGN FOR DOWNHOLE ACOUSTIC

TELEMETRY

A Dissertation

by

AHMED REDISSI

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Scott Miller

Committee Members, Tie Liu

 Raffaella Righetti

 Ding Zhu

Head of Department, Miroslav Begovic

May 2019

Major Subject: Electrical Engineering

Copyright 2019 Ahmed Redissi

ii

ABSTRACT

The goal of this dissertation is to design a reliable and efficient communication

system for downhole acoustic communication. This system is expected to operate in two

different modes. A broadband high data rate mode in case of transmission of an image or

a video file and a narrowband low data rate mode in case of transmission of sensor

readings. This communication system functions by acoustic vibration of the pipes and

uses them as the channel instead of installing long cables in areas that are hard to reach.

However, this channel has unique characteristics where it exhibits several passbands and

stopbands across the frequency spectrum. The communication system is expected to get

around those challenges in both modes of operation. In the broadband case, the system

uses Orthogonal Frequency Division Multiplexing to transmit data across multiple

orthogonal frequencies spanning multiple passbands combined with an error-correction

code to recover some of the losses caused by the channel. In the narrowband case, a

short packet is transmitted at a low data rate where the signal spectrum can fit inside one

passband. However, transmitting short packets induces a new synchronization problem.

This dissertation investigates and explores in detail the problem of synchronization on

short packets where each synchronization stage is examined. A simple algorithm that

exploits the presence of error-correction codes is proposed for the frame synchronization

stage and demonstrated to approach the optimal solution. Then, all synchronization

stages are combined in order to study the effect of propagated errors caused by imperfect

synchronization from one stage to the next and what can be done in the design of the

iii

packet and the receiver structure to mitigate those losses. The resulting synchronization

procedure is applied to the pipe strings and demonstrated to achieve desirable levels of

performance with the assistance of equalization at the receiver.

iv

DEDICATION

To Mom and Dad, thanks for the endless love and support.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professors

Scott Miller, Tie Liu, and Rafaella Righetti of the Department of Electrical and

Computer Engineering and Professor Ding Zhu of the Department of Petroleum

Engineering.

 All other work conducted for the dissertation was completed by the student

independently.

Funding Sources

Graduate study was supported by an assistantship from Texas A&M University.

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION .. iv

CONTRIBUTORS AND FUNDING SOURCES .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

LIST OF TABLES .. xiv

CHAPTER I INTRODUCTION .. 1

Motivation and Background ... 1
Literature Review ... 3

CHAPTER II CHANNEL CHARACTERIZATION .. 7

Frequency Response ... 9
Phase Response .. 17
Effect of Measurement Location .. 18

Inter-Symbol-Interference .. 21

CHAPTER III HIGH DATA RATE COMMUNICATION SYSTEM 23

Application Requirements .. 23
Signaling Format .. 24

Synchronization .. 28
Effect of Different Parameters on Performance ... 29

Effect of Frequency Spacing .. 29
Effect of Cyclic Prefix .. 30
Effect of Bandwidth ... 32
Effect of Channel Coding and Modulation Order .. 33

Design Process and Results .. 39

CHAPTER IV LOW DATA RATE COMMUNICATION SYSTEM 47

Signaling Format .. 47

vii

Synchronization for Short Packets ... 48

CHAPTER V COARSE AND SYMBOL SYNCHRONIZATION FOR VERY

SHORT PACKETS .. 54

Problem Setup .. 54

Effect of Uncertainty Window Size ... 58
Effect of Pulse Shaping .. 61
Theoretical Approximation .. 64

CHAPTER VI FRAME SYNCHRONIZATION FOR VERY SHORT PACKETS 68

Problem Setup .. 68
Decoder-Assisted Frame Synchronization ... 70

Maximum Likelihood Frame Synchronization .. 71
Simulation .. 73

Effect of Coding Scheme ... 78
Phase Synchronization and Ambiguity Resolution .. 80

CHAPTER VII THEORETICAL APPROXIMATION FOR THE PROBABILITY

OF SYNCHRONIZATION ERROR ... 82

Expressing the Probability of Synchronization Error .. 82

Approximating the Unknown Parameters .. 86

Noise Only Windows ... 87

Windows with Partial Signal .. 88
Simulation .. 91

CHAPTER VIII EFFECT OF DIFFERENT PARAMETERS ON PERFORMANCE

FOR THE LOW DATA RATE COMMUNICATION SYSTEM 97

Effect of Code Parameters.. 97
Effect of the Smaller Uncertainty Window Size .. 101
Effect of Imperfect Synchronization and Propagating Errors 102
Effect of Pilot Symbols .. 105
Potential Improvement ... 107

Application to the Pipe Strings Channel .. 109

Effect of Measurement Location .. 109

Effect of the Bit Rate .. 111
Effect of the Number of Pipe Segments ... 113
Effect of Propagation Distance ... 114

CHAPTER IX CONCLUSIONS ... 116

Summary .. 116

viii

Main Findings .. 116
Channel Characterization ... 116
High Data Rate Communication System .. 117
Low Data Rate Communication System .. 118

REFERENCES ... 121

APPENDIX A .. 128

Noise Only Case ... 128
Signal Present Case .. 129

APPENDIX B .. 131

Noise Only Case ... 131

Windows with Partial Signal .. 132

APPENDIX C .. 135

APPENDIX D .. 139

ix

LIST OF FIGURES

 Page

Figure 2.1: Channel response measured at pipe no. 10 out of 100 pipe segments 10

Figure 2.2: Passband and stopband width vs. carrier frequency 12

Figure 2.3: Passband strength vs. distance ... 15

Figure 2.4: Stopband depth vs. distance ... 15

Figure 2.5: Passband strength vs. frequency .. 16

Figure 2.6: Stopband depth vs. frequency .. 16

Figure 2.7: Phase offset induced by the channel .. 17

Figure 2.8: Channel gain vs. carrier frequency measured at the end of pipe no. 25 out

of 50 pipe segments .. 19

Figure 2.9: Channel gain vs. carrier frequency measured in the middle of pipe no .25

out of 50 pipe segments .. 19

Figure 2.10: Channel gain and phase offset vs. carrier frequency measured at the end

of pipe no. 10 out of 50 pipe segments ... 20

Figure 2.11: Channel gain and phase offset vs. carrier frequency measured in the

middle of pipe no. 10 out of 50 pipe segments ... 21

Figure 2.12: Received signal in a noise-free environment ... 22

Figure 3.1: Splitting of symbols in an OFDM system ... 25

Figure 3.2: Procedure for transmitting and receiving an OFMD signal 27

Figure 3.3: OFDM signal in time and frequency domains ... 28

Figure 3.4: Effect of frequency spacing on the performance of OFDM in pipe strings .. 30

Figure 3.5: Effect of cyclic prefix length on the performance of OFDM in pipe strings 31

Figure 3.6: Effect of bandwidth on the performance of OFDM in pipe strings 33

Figure 3.7: Comparison of performance for modulated systems with convolutional

codes ... 34

x

Figure 3.8: Comparison of coded and uncoded 8-PSK in an AWGN channel 35

Figure 3.9: Comparison of coded and uncoded 16-PSK in an AWGN channel 35

Figure 3.10: Comparison of coded and uncoded 32-PSK in an AWGN channel 36

Figure 3.11: Performance of 16-QAM in the presence of 1dB channel gain 37

Figure 3.12: Performance of 16-QAM in the presence of -1dB channel gain 37

Figure 3.13: Performance of 16-QAM in the presence of -3dB channel gain 38

Figure 3.14: Performance of 64-QAM in the presence of -3dB channel gain 38

Figure 4.1: General structure of a communication system ... 49

Figure 4.2: Effect of incorrect symbol synchronization on the probability of packet

loss for a rate 1/2 convolutional code with 10 information bits 52

Figure 4.3: Effect of phase offset on the probability of packet loss for a rate 1/2

convolutional code with 10 information bits .. 53

Figure 5.1: Output of the matched filter ... 55

Figure 5.2: Comparison between decoder-assisted synchronization and energy-based

synchronization for a (24,10,3) convolutional code ... 57

Figure 5.3: Probability of signal capture error for a (24,10,3) convolutional code with

a window M times the signal .. 59

Figure 5.4: Effect of pulse shaping on the probability of packet loss for a (24,10,3)

convolutional code .. 62

Figure 5.5: Matched filter output for a square pulse .. 63

Figure 5.6: Matched filter output for a triangular pulse ... 64

Figure 5.7: Probability of signal capture error with a window 10 times the signal 66

Figure 5.8: Probability of signal capture error with a window 5 times the signal 67

Figure 6.1: General received frame structure ... 69

Figure 6.2: Comparison of different frame synchronization algorithms for 10

information bits ... 74

xi

Figure 6.3: Comparison of different frame synchronization algorithms for 20

information bits ... 75

Figure 6.4: Comparison of different frame synchronization algorithms for 100

information bits ... 75

Figure 6.5: Comparison of different frame synchronization algorithms on a (20,10)

LDPC code .. 77

Figure 6.6: Comparison of different codes for 12 information bits 79

Figure 7.1: Metric distribution at various time delays for a (20,10) random code 84

Figure 7.2: Frame synchronization for a random code (20,10) .. 92

Figure 7.3: Frame synchronization for a random code (21,7) .. 93

Figure 7.4: Frame synchronization for a random code (40,8) .. 93

Figure 7.5: Frame synchronization for a random code (42,7) .. 94

Figure 7.6: Frame synchronization for a random code (24,6) .. 94

Figure 7.7: Frame synchronization for a random code (10,5) .. 95

Figure 7.8: Frame synchronization for a random code (50,5) .. 95

Figure 7.9: Frame synchronization for a random code (48,6) .. 96

Figure 7.10: Frame synchronization for a random code (27,9) .. 96

Figure 8.1: Probability of packet loss for rate 1/2 convolutional codes in the presence

of synchronization errors (k=10) .. 98

Figure 8.2: Probability of packet loss for rate 1/3 convolutional codes in the presence

of synchronization errors (k=10) .. 98

Figure 8.3: Probability of packet loss for rate 1/4 convolutional codes in the presence

of synchronization errors (k=10) .. 99

Figure 8.4: Probability of packet loss for rate 1/2 convolutional codes with perfect

synchronization (k=10) ... 100

Figure 8.5: Probability of packet loss for rate 1/3 convolutional codes with perfect

synchronization (k=10) ... 100

xii

Figure 8.6: Probability of packet loss for rate 1/4 convolutional codes with perfect

synchronization (k=10) ... 101

Figure 8.7: Effect of window size on the probability of packet loss for a (30,10,6)

convolutional code .. 102

Figure 8.8: Effect of imperfect synchronization on the probability of packet loss for

a (30,10,6) convolutional code ... 103

Figure 8.9: Effect of pilot symbols on the probability of packet loss for a (30,10,6)

convolutional code .. 107

Figure 8.10: Comparison of the decoder-assisted synchronization with the above

optimal synchronization .. 109

Figure 8.11: Transmitted signal in time and frequency domains 110

Figure 8.12: Effect of the measurement location on the probability of packet loss for

a (30,10,5) convolutional code using decoder-assisted synchronization 111

Figure 8.13: Effect of the bit rate on the probability of packet loss for a (30,10,5)

convolutional code using decoder-assisted synchronization 112

Figure 8.14: Effect of the number of pipes on the probability of packet loss for a

(30,10,5) convolutional code using decoder-assisted synchronization 113

Figure 8.15: Effect of distance on the probability of packet loss for a (30,10,5)

convolutional code using decoder-assisted synchronization 114

Figure 9.1: Illustration of the Maximization Box and the Correlation Box 135

Figure 9.2: Illustration of Step 1 .. 136

Figure 9.3: Illustration of Step 2 .. 137

Figure 9.4: Illustration of Step 3 .. 137

Figure 9.5: Illustration of Step 4 .. 138

Figure 9.6: Illustration of the Pair Correlation Box ... 139

Figure 9.7: Contents of the Pair Correlation Box ... 140

Figure 9.8: Illustration of Step 1 .. 140

Figure 9.9: Illustration of Step 2 .. 141

xiii

Figure 9.10: Illustration of Steps 3a-3d .. 141

Figure 9.11: Illustration of Steps 3e-3h .. 142

xiv

LIST OF TABLES

 Page

Table 2.1: Dimensions of the pipe segments and joints ... 9

Table 2.2: Approximate width of the passbands measured at pipe no. 10 out of 100 11

Table 2.3: Approximate width of the stopbands measured at pipe no. 10 out of 100 11

Table 2.4: Passband strength (dB) vs. distance .. 13

Table 2.5: Stopband depth (dB) vs. distance .. 14

Table 3.1: Required data rate for each proposed application ... 24

Table 3.2: Required modulation order for a colored image (16 colors) 42

Table 3.3: Required modulation order for a colored image (256 colors) 43

Table 3.4: Approximate achievable distance for a colored image (16 colors) 44

Table 3.5: Approximate achievable distance for a colored image (256 colors) 45

Table 8.1: Summary of losses due to the imperfect implementation of each

synchronization stage .. 104

Table 8.2: Signal strength as a function of distance ... 115

1

CHAPTER I

INTRODUCTION

Motivation and Background

Downhole acoustic telemetry is a process in which acoustic waves are used as

means to carry information and measurements taken at inaccessible or remote areas such

as wells. The process of telemetry in general is used in multiple fields and industries

such as oil and gas, medicine, agriculture, water management, energy monitoring,

transportation, mining, retail, and so on. When it comes to the oil and gas industry in

particular, acoustic telemetry is extremely beneficial in three ways. First, it allows for

the measurement of important parameters such as depth, pressure, temperature, flow,

porosity, and viscosity. Obtaining these measurements is crucial in determining how

much oil and natural gas can be extracted from a well. Acoustic telemetry offers access

to the well by extracting all of this information from an area that is generally

inaccessible or potentially hazardous for humans. Second, it allows for around the clock

monitoring and inspection of pipes of equipment. For example, acoustic waves can be

used to check for leaks and corrosion in a pipe by vibrating the pipe and observing the

resulting modes. Third, acoustic telemetry offers a cheap and reliable alternative to long,

expensive, and high maintenance cables that would have to be installed in these remote

2

areas. Instead, the acoustic wave will be carrying the information needed while the pipes

act as a wireless channel.

At this point, there needs to be a reliable and energy efficient communication

system that carries the required information from a sensor placed at the bottom of the

well to the technicians and engineers at the surface so they can analyze the data and

make decisions. The type of information that needs to be transmitted can be either a

sensor measurement or a captured image or video. Each one requires a different

communication system because of the channel characteristics and the different metrics

for evaluating energy efficiency. The sensor reading consists of a real number converted

into a short sequence of bits while the image or the video are converted into a much

longer sequence of bits. The sensor readings can be transmitted using a low data rate

single carrier system while the image or video is better suited for a high data rate system

with a wide bandwidth such as Orthogonal Frequency Division Multiplexing (OFDM)

[1]. As for energy efficiency, the metric is the word error rate for short packets and bit

error rate for long packets. The reasoning behind using two different metrics is explained

as follows. When a sensor reading is converted into a bit sequence, a single error in this

sequence will result in an entirely different number. Hence, the entire packet must be

transmitted and received correctly. However, when an image is converted into a much

longer bit sequence, an error in a few bits will not result in an entirely different image.

Each of the proposed communication systems has a unique challenge. For the low data

rate case, synchronization is a major concern and is extremely crucial for the correct

transmission of the packet. For the high data rate case, the challenge is overcoming the

3

presence of the stopbands by either avoiding them or compensating for the losses they

cause.

This dissertation is organized as follows. First, a survey of energy efficient

communication systems and synchronization algorithms is conducted in the literature.

Second, the channel response is fully characterized in chapter II. Then in chapter III, an

OFDM communication system for the long packet case is proposed. Chapters IV, V, VI,

and VII treat the design of signaling format and the synchronization problem for the

short packet case. Finally, all synchronization stages are combined in chapter VIII to

study the effect of propagating errors and how to limit them.

Literature Review

There has been a significant amount or works in the literature dealing with each

of the topics of this dissertation. We will focus on the works that deal with energy

efficiency and synchronization for short packets. When it comes to the topic of energy

efficient communication combined with error correction codes [2] that can be applied to

short packets, the following works are noteworthy. The authors of [3] attempt to find

balance between energy efficiency and bandwidth efficiency for short packet

communications. The authors of [4] combine erasure-correction and error-correction

decoding for a more reliable transmission and studies the tradeoff between relying on

one over the other. The works of [5,6] find bounds on coding rates for short packet

transmission over Rayleigh fading channels in addition to multiple antennas

transmission schemes. A review of short packet communication techniques is provided

in [7]. The parameters that affect efficiency of a communication system are identified in

4

[8]. The author of [9] finds bounds on the best possible probability of error for coded

systems in a Gaussian channel while the authors of [10] finds the best possible

probability of error as a function of the block size. The work of [11] models a channel

with synchronization errors as a duplication, deletion, and substitution channel. Finally,

[12] finds the block error probability of convolutional codes treated as block codes.

When trying to look for answers on synchronization for coded short packets,

some works in the literature mentioned an entirely unique class of codes designed for

synchronization known as comma-free codes. The author of [13] talks about error

correcting codes where any code formed by the concatenation of the tail of one code

with the beginning of the next code is not a valid code. The author of [14] provides a

guideline for creating comma-free codes with the maximal number of words. Then, [15]

constructed high rate comma-free codes by combinatorial design. However, comma-free

codes are only useful when trying to distinguish between two consecutive codes. Our

problem consists of performing the different levels of synchronization on a single

transmitted code surrounded by noise. Therefore, we needed to find more answers.

For coarse and symbol synchronization on short packets, no sufficient answers

were found in the literature while the standard synchronization techniques such as

Gardner [16], Early-Late [17], and Mueller-Muller [18] did not offer a satisfying

performance over an energy-based detection method. For phase synchronization, [19]

proposes a phase estimation technique that uses a pilot symbol as an initial guess and

improves on it by iterative soft decision decoding. The work of [20] uses Monte Carlo

methods to estimate the distribution of the unknown phase and proposes several

5

approximations to simplify the algorithm. Carrier and phase synchronization of short

packet turbo coded signals is proposed in [21] by maximum likelihood iterative soft

decision or maximizing the Mean Squared Soft Output cost function. Then, [22] resolves

the phase ambiguity using Hypothesis Testing on different frame synchronization

algorithms.

Meanwhile at the frame synchronization stage, there has been a significant

number of works that can be divided in two categories. The first category is for works

that utilize a known pilot sequence or a sync word to perform the synchronization

operation. For example, [23] performs frame synchronization by correlating the received

signal with the pilot sequence and choosing the time delay that maximizes this

correlation. A synchronization technique is proposed in [24] and provides several most

likely frame starting positions and narrows it down to one. This is known as the List

Synchronizer. Then, [25] achieves Maximum a Posteriori (MAP) frame synchronization

using packet energy and the sync word to find the packet starting location. The work of

[26] derives the Maximum Likelihood (ML), correlation, and high Signal-to-Noise Ratio

(SNR) rules for frame synchronization in Additive White Gaussian Noise (AWGN)

channels while [27] repeats the same exercise for flat fading channels. Then, [28]

provides lower bounds for ML, correlation, and high SNR frame synchronization

decision rules in AWGN channels. The author of [29] proposes improving frame

synchronization by terminating the trellis at the all zero state when using convolutional

codes. In [30], frame synchronization is performed by treating the received symbols as a

Markov chain in AWGN.

6

The second category of works exploits the presence of error correction codes to

aid the synchronization. For instance, [31] proposes an algorithm that uses the code

structure and combining two previous algorithms. This algorithm uses mode separation

to estimate the frame boundary where a Log-Likelihood Ratio (LLR) is computed and its

distribution is plotted. The correct frame starting position is the one with the most

bimodal distribution. A frame synchronization method that inserts the pilots as a mid-

amble instead of the preamble is proposed in [32] and uses the decoder to determine the

frame location as the mid-amble will be recognized later at the decoding stage. The work

of [33] performs blind frame synchronization by checking if the observed frame is a

valid code word and [34] uses the same idea on cyclic codes. A synchronization

algorithm is developed in [35] and uses the code structure to eliminate the need for

overhead through Factor Graphs and the Sum-Product Algorithm [36]. The authors of

[37] implement code-aided frame synchronization using decoder decisions as MAP

probabilities for Low Density Parity Check (LDPC) and Turbo codes and the authors of

[38] use the structure of Turbo codes to perform frame synchronization without

preamble. An iterative receiver without preamble using Expectation Maximization and

the Sum-Product Algorithm is introduced in [39]. A comparison of different algorithms

that use the code structure for frame synchronization and phase ambiguity resolution can

be found in [40] while [41] proves that frame synchronization techniques using the code

structure with no overhead coincide with the MAP frame synchronization under certain

conditions. Finally, [42] proposes a blind MAP frame synchronization method for codes

having a sparse parity check matrix and analyzes it further in [43].

7

CHAPTER II

CHANNEL CHARACTERIZATION

Before we design a communication system, we need to find out what the channel

response looks like. The channel in this case is a sequence of steel pipes that were

interconnected by joints. These pipes will be acoustically vibrated by a transmitter.

Then, several receivers and relays will be placed along the way to pick up the signal and

relay it further until its final destination. It was proposed in [44] and experimentally

verified in [45] that these pipes have frequency selective properties with certain fixed

frequency passbands and stopbands. If a signal is transmitted at a frequency that falls in

a stopband, it will be effectively lost. While if it is transmitted at a frequency that falls in

a passband, the message will go through but might suffer from a magnitude loss whose

strength depends on which passband was chosen in addition to a phase shift.

The experimental results of [45] showed that the acoustic vibration of the pipe

strings excites three vibrational modes. The first mode is the longitudinal L(0,1) mode

where vibrations take place in the radial and azimuthal directions of the pipes. The

second is the torsional T(0,1) mode where vibrations take place in the azimuthal

direction. The last is the flexural F(1,1) mode where vibrations take place in all three

radial, longitudinal, and azimuthal directions. It was also shown in these experiments

that the L(0,1) mode is the most dominant in terms of amplitude clearly overwhelming

the others two.

8

Assuming longitudinal excitation only, we ran a simulation in order to visualize

the channel response. In this simulation, an OFDM signal with Binary Phase Shift

Keying (BPSK) subcarriers composed of a known sequence of +1s and -1s was

transmitted. This way, we set up the received signal to easily extract the channel’s

frequency and phase response. If 𝑥 is the transmitted signal and 𝑦 is the received signal

in a noise-free environment, then the channel gain ℎ(𝑓) and the phase offset 𝜃(𝑓) for

each frequency can extracted in the following manner:

 𝑦(𝑡) = ℎ(𝑓)𝑥(𝑡)𝑒𝑗(𝜃(𝑓)+𝑎𝑛𝑔𝑙𝑒(𝑥(𝑡)) (2.1)

Since 𝑥 is a known sequence of +1s and -1s and the channel gain and phase offset are

constant in time, then:

 𝑦(𝑡) = {
ℎ(𝑓)𝑒𝑗𝜃(𝑓), 𝑖𝑓 𝑥(𝑡) = 1

−ℎ(𝑓)𝑒𝑗(𝜃(𝑓)+𝜋), 𝑖𝑓 𝑥(𝑡) = −1
 (2.2)

 ℎ(𝑓) = |𝑦(𝑡)| (2.3)

 𝜃(𝑓) = {
𝑎𝑛𝑔𝑙𝑒(𝑦(𝑡)), 𝑖𝑓 𝑥(𝑡) = 1

𝑎𝑛𝑔𝑙𝑒(𝑦(𝑡)) − 𝜋, 𝑖𝑓 𝑥(𝑡) = −1
 (2.4)

The bandwidth of this signal spans the frequencies between 500Hz and 3kHz

with a frequency spacing of 2Hz for each OFDM subcarrier. This signal was allowed to

propagate through a sequence of 100 steel pipe segments interconnected by joints. The

parameters of these pipes and joints are summarized in table 2.1.

9

Table 2.1: Dimensions of the pipe segments and joints

Outer Diameter

(mm)

Thickness (mm) Length (m)

Pipe Segments 73.66 3.81 9.86665

Joints 95.25 15.87 0.13335

The signal was then received at the beginning of the 10th,20th,30th,40th, and 50th

pipe segments out of the total 100 segments used.

We will look at the channel’s frequency response, phase response, and

demonstrate how the different reflections from the beginning and end of the pipes and all

the joints along the way interfere with the desired signal and cause Inter-Symbol-

Interference (ISI). The magnitude of the received symbols was considered to be the

channel frequency response while their phase was taken as the channel phase response

after subtracting 180˚ in case the transmitted symbol had a negative sign.

Frequency Response

Figure 2.1 shows what the channel frequency response looks like when the signal

is measured at the beginning of the 10th pipe segment. It clearly shows the presence of

passbands and stopbands as they were expected to occur.

10

Figure 2.1: Channel response measured at pipe no. 10 out of 100 pipe segments

We can clearly observe from figure 2.1 that as the carrier frequency increases the

passbands get narrower and weaker and that the stopbands get wider and deeper. First,

let’s examine how the width of the passbands and stopbands change. Tables 2.3 and 2.4

and figure 2.2 fully describe this behavior. The largest passband has a width of 214Hz

and the next passbands shrink in an almost linear fashion. The exact opposite happens to

the stopbands where the first stopband is 54Hz wide and the next ones linearly increase

in width.

11

Table 2.2: Approximate width of the passbands measured at pipe no. 10 out of 100

Passband

No.

1 2 3 4 5 6 7 8 9 10

Beginning

Frequency

(Hz)

528 796 1064 1332 1600 1872 2138 2406 2678 2940

Ending

Frequency

(Hz)

742 994 1248 1504 1758 2006 2266 2522 2774 3030

Bandwidth

(Hz)

214 198 184 172 158 134 128 116 96 84

Table 2.3: Approximate width of the stopbands measured at pipe no. 10 out of 100

Stopband

No.

1 2 3 4 5 6 7 8 9

Beginning

Frequency

(Hz)

742 994 1248 1504 1758 2006 2266 2522 2774

Ending

Frequency

(Hz)

796 1064 1332 1600 1872 2138 2406 2678 2946

Bandwidth

(Hz)

54 70 84 96 114 132 140 156 172

12

Figure 2.2: Passband and stopband width vs. carrier frequency

The strength of the passbands and the depth of the stopbands also change both in

frequency and distance as we move further down the sequence of pipes from the 10th

pipe to the 50th pipe. Tables 2.4 and 2.5 and figures 2.3-2.6 describe this behavior. In

terms of distance, the same passband experiences an exponential (linear in dB) decay in

strength as the measurement location goes farther down the pipe strings. In a similar

fashion, stopbands will linearly gain more depth. In terms of frequency and at the same

distance, the passbands will exponentially lose strength as the frequency increases. On

the other hand, the stopbands will linearly get deeper for higher frequencies.

50

70

90

110

130

150

170

190

210

0 2 4 6 8 10

B
an

d
w

id
th

 (
H

z)

Band number

Passband Width

Stopband Width

13

Table 2.4: Passband strength (dB) vs. distance

Location\Passban

d No.

1 2 3 4 5 6 7 8 9 10

10 -0.5

-

0.7

5

-1 -1.5

-

2.1

5

-3 -4 -5.15 -6.7 -8.5

20

-

0.85

-1.4

-

2.1

-3 -4.3 -5.8 -7.8

-

10.2

5

-

13.

3

-17

30 -1 -2

-

3.2

-4.5 -6.4 -8.7 -11.7 -15.4 -20 -25.4

40 -1.4 -2.6

-

4.1

-6 -8.5

-

11.

2

-

15.5

5

-20.4

-

26.

6

-34

50 -2.5 -4 -6 -8

-

10.

8

-

14.

6

-19.4 -25.5

-

33.

2

-

42.3

5

14

Table 2.5: Stopband depth (dB) vs. distance

Location\Stopban

d No.

1 2 3 4 5 6 7 8 9

10 -26.5 -35 -42.8 -51 -57.5 -68 -72 -79 -85

20 -43 -54 -66 -63.6 -84 -85

-

97.2

5

-102 -110.5

30 -45.5

-

54.

4

-75.5

-

74.7

5

-85.4

-

89.4

5

-

105.

5

-

112.

2

-124.1

40

-

57.6

5

-

55.

1

-72.8 -74 -99.15 -98

-

115.

8

-

123.

2

-138.6

50 -52.2 -61

-

86.3

5

-

89.5

5

-

102.5

5

-

109.

7

-

127.

5

-

135.

3

-

153.7

5

15

Figure 2.3: Passband strength vs. distance

Figure 2.4: Stopband depth vs. distance

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

10 15 20 25 30 35 40 45 50
P

as
sb

an
d

 S
tr

e
n

gt
h

 (
d

B
)

Measurement Locations (Pipe No.)

Passband 1

Passband 2

Passband 3

Passband 4

Passband 5

Passband 6

Passband 7

Passband 8

Passband 9

Passband 10

-160

-140

-120

-100

-80

-60

-40

-20

10 15 20 25 30 35 40 45 50

St
o

p
b

an
d

 D
e

p
th

 (
d

B
)

Measurement Locations (Pipe No.)

Stopband 1

Stopband 2

Stopband 3

Stopband 4

Stopband 5

Stopband 6

Stopband 8

Stopband 9

16

Figure 2.5: Passband strength vs. frequency

Figure 2.6: Stopband depth vs. frequency

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 2 4 6 8 10
P

as
sb

an
d

 S
tr

e
n

gt
h

 (
d

B
)

Passband Number

10 Pipes

20 Pipes

30 Pipes

40 Pipes

50 Pipes

-160

-140

-120

-100

-80

-60

-40

-20

1 2 3 4 5 6 7 8 9

St
o

p
b

an
d

 D
e

p
th

 (
d

B
)

Stopband Number

10 Pipes

20 Pipes

30 Pipes

40 Pipes

50 Pipes

17

Phase Response

In addition to the frequency response, the channel also introduces an unknown

phase offset to all symbols transmitted at the same frequency. Unlike the frequency

response, the phase response of the channel is not fixed and very difficult to predict. Any

inaccuracy in the estimation of the time delay, can result in a different phase offset.

Figure 2.7 shows an example of this phase offset where the signal constellation was

either rotated by about 45˚ counter clockwise or by about 135˚ clockwise. In this figure,

the dots represent the noisy received symbols for a BPSK signal.

Figure 2.7: Phase offset induced by the channel

18

Effect of Measurement Location

We also test the effect of the measurement location within the same pipe segment

on the channel gain and phase offset. We used 50 steel pipes whose dimensions are the

same as in table 2.1 and transmitted the same signal as before. The measurements were

performed at the end and the middle of the 25th pipe segment and the channel gain is

shown in figures 2.8 and 2.9 for the end and middle measurements respectively. While

the locations of the passbands and stopbands in figures 2.8 and 2.9 are the same, the

shape and strength of the passbands are different. For the measurements at the end of the

pipe segment, the passbands are somewhat flat. Meanwhile for the measurements at the

middle of the pipe segment, the passbands are slanted and offer a positive (in dB)

channel gain that can amplify the signal if those frequencies were used for transmission.

19

Figure 2.8: Channel gain vs. carrier frequency measured at the end of pipe no. 25

out of 50 pipe segments

Figure 2.9: Channel gain vs. carrier frequency measured in the middle of pipe no

.25 out of 50 pipe segments

20

If we repeat the same experiment and make the measurements at the 10th pipe

segment instead of the 25th segment, we get a similar shape but we start to see some

fluctuations show up in the first passbands for both frequency and phase responses as

shown in figure 2.10 and 2.11. This behavior was predicted and explained in [44]. For n

pipe segments, we expect to see n fluctuations because each of the pipe segments

requires a frequency change to fit an extra half of a wavelength causing a resonance at

those frequencies. Since the strength of the passbands decays as a function of distance

and frequency, these fluctuations will in turn lose strength until they disappear.

Figure 2.10: Channel gain and phase offset vs. carrier frequency measured at the

end of pipe no. 10 out of 50 pipe segments

21

Figure 2.11: Channel gain and phase offset vs. carrier frequency measured in the

middle of pipe no. 10 out of 50 pipe segments

Inter-Symbol-Interference

Since the acoustic wave is used to vibrate the pipes and carry the information, we

expect to see several reflections at the receiver that can be placed in two categories. The

first category is the reflections coming from the joints and those arrive much sooner but

are weaker. The second category is the reflections coming from the end and the

beginning of the pipe strings and they arrive later but are stronger than the joints

reflections. Depending on the measurement location, these reflections can arrive before

the end of the desired signal and cause an unwanted interference. The reflected

waveform representing a transmitted symbol will interfere with the desired waveform

representing another symbol causing a distortion. This is known as Inter-Symbol-

22

Interference. Figure 2.12 shows this behavior and the presence of reflections for the

transmitted signal in a noise-free environment.

Figure 2.12: Received signal in a noise-free environment

Given the channel’s frequency selectivity, we propose two different solutions for

the two communication modes of our application. For the broadband case where an

image or a video is transmitted, we will design an OFDM signal whose bandwidth spans

multiple passbands and avoids all the stopbands in-between. For the narrowband case

where sensor readings consisting of very short packets are periodically transmitted, we

will design a single carrier system whose bandwidth fits inside one passband and find

the synchronization algorithms that give us the best possible performance with minimal

complexity.

23

CHAPTER III

HIGH DATA RATE COMMUNICATION SYSTEM

Application Requirements

Before we can design this communication system, we need to know the required

data rate to support this application. We would like to be able to transmit either a short

video or small image. The design constraint is that the signal should not last more than

one minute in order to quickly receive the video or the image. However, the spectrum

that we need to use is limited to 2.5-3kHz and half of which is unusable stopbands. We

also noticed that the passbands quickly decay in amplitude as the bandwidth increases.

This means that a significant portion of the signal will suffer from a major loss and will

require a lot of equalization and signal processing to recover the losses. In order to avoid

the high receiver complexity, we propose using an OFDM system that allows for high

data rates while minimizing receiver complexity. This system eliminates the need for

equalization because it splits the broadband frequency selective channel into much

narrower sub-channels where the bandwidth of each sub-channel is sufficiently small

that each sub-channel behaves in a non-frequency-selective manner.

The total bandwidth of the passbands is approximately 1484Hz. In an OFDM

system, this translates to about 1484 bits/sec if we intend to use all of them. In table 3.1,

we summarize the application specifications and the required data rate for the signal to

not last more than one minute.

24

Table 3.1: Required data rate for each proposed application

Application Compression Ratio

Required Data Rate

(bits/sec)

5 Seconds Video (240p,

256 colors, 24 frames/sec)

30:1 44800

Image (480x480 pixels,

256 colors)

10:1 3072

Image (480x480 pixels, 16

colors)

10:1 1536

We can immediately see that the video application is not achievable for this

channel as it requires a signal constellation with more than 2 billion points if we intend

to use all passbands in the spectrum. However, the colored images are achievable and we

will go through the design process for the communication system for each one of them in

the next sections.

Signaling Format

In an OFDM system, the transmitted symbols are split across both time and

frequency such that those frequencies, often referred to as subcarriers, are orthogonal.

The spacing between those frequencies is chosen such that the channel response in that

very narrow bandwidth is flat which eliminates the need for equalization at the receiver.

The orthogonality of those frequencies allows for their corresponding waveforms to be

25

transmitted at the same time without any self-interference. For a given bit rate 𝑅𝑏 =
1

𝑇𝑏

where 𝑇𝑏 is the bit duration and a number of subcarriers 𝑁𝑐, the frequency spacing is

proportional to the bit rate:

 ∆𝑓 ∝
1

𝑁𝑐𝑇𝑏
=
𝑅𝑏
𝑁𝑐

 (3.1)

Then, the transmitted symbols can be split between time and frequency as shown in

figure 3.1.

Figure 3.1: Splitting of symbols in an OFDM system

We need carefully choose the carrier frequency and the data rate to match the

width and location of the used passbands. This can be done by placing the carrier

frequency at the start of the first used passband and choosing the data rate such that the

signal bandwidth ends at the edge of the last used passband. Since the strength of the

26

passbands decays as a function of frequency, it will be more energy-efficient to start

with the first passband in the frequency range of interest and extend the signal

bandwidth to the next set of passbands that will be used. In order to avoid data falling in

a stopband, we will place zeros in the frequencies that fall in the stopband. Since the

passbands and stopbands locations are fixed in time, the receiver can easily pick off the

transmitted data from the desired frequencies.

The OFDM transmission can be achieved by following the procedure outlined in

figure 3.2. The inverse Fast Fourier Transform is used to place the transmitted symbols

at the desired frequency spacing. Once that is achieved, a portion is copied from the end

of each OFDM symbol and placed before the same OFDM symbol in time. This

procedure is known as inserting a cyclic prefix and it is done to combat ISI where a

waveform representing one symbol interferes with and distorts the waveform

representing another symbol. Finally, the signal is mounted on a carrier frequency to

create the waveforms with the desired orthogonal frequencies and the OFDM symbols

are transmitted sequentially in time. This process is then reversed at the receiver as

shown in figure 3.2.

27

Figure 3.2: Procedure for transmitting and receiving an OFMD signal

This process will result in a transmitted signal whose time and frequency

characteristics are shown in figure 3.3. It can clearly be seen that the signal spectrum

mirrors the frequency response of the channel where all the meaningful data was placed

in the passbands while zeros were placed in the stopbands.

28

Figure 3.3: OFDM signal in time and frequency domains

Synchronization

The first OFDM symbol is used as a pilot symbol that is known at the receiver.

This is done to perform both time and phase synchronization. For time synchronization,

the pilot OFDM symbol is reconstructed at the receiver and correlated with the received

signal and the time delay with the highest correlation is considered to be the correct time

delay. For phase synchronization, figures 2.10 and 2.11 showed that the channel’s phase

response changes with each carrier frequency. Hence, each subcarrier requires its own

phase synchronization procedure. For each subcarrier, the phase of the pilot symbol is

used to estimate the offset, resolve the phase ambiguity, and correct the phase offset.

Since the pilot phase is known at the receiver, it can be used to resolve the 180˚ phase

ambiguity of whether the signal constellation was rotated by 𝜃𝑘 or 𝜃𝑘 + 𝜋 in the counter

clockwise direction where 𝜃𝑘 is the phase offset estimate for the kth subcarrier. Once the

29

phase offset is estimated and the ambiguity is resolved, the signal constellation can be

rotated by the appropriate amount to undo this offset.

Effect of Different Parameters on Performance

Effect of Frequency Spacing

As mentioned earlier, the frequency spacing (subcarrier bandwidth) ∆𝑓 for an

OFDM system has a big effect on performance when the passband used has a lot of

fluctuations as shown in figures 2.10 and 2.11. Smaller frequency spacing will lead to

better performance as the channel response within the subcarrier bandwidth becomes

more flat. We ran a simulation to test the performance for a frequency spacing of 1Hz,

2Hz, 4Hz, 6Hz, and 12Hz. In this simulation, the OFDM signal had a narrowband and its

bandwidth was able to fit inside the first passband at a carrier frequency of 1.1kHz and

the bit rate was fixed to 48 bits/sec. The measurements were recorded at the end of the

10th pipe string out of a total of 50 pipe strings. The results are shown in figure 3.4 and

indicate that the smallest frequency spacing offered a better performance over the others.

The 2Hz frequency spacing was used for the rest of the simulations since there was

minimal difference between the 1Hz and 2Hz case.

30

Figure 3.4: Effect of frequency spacing on the performance of OFDM in pipe

strings

Effect of Cyclic Prefix

Since an OFDM system requires inserting a cyclic prefix to combat ISI and

simplify the channel estimation process, we need to know how long does the cyclic

prefix need to be in order to guarantee the best possible performance. Usually, longer

cyclic prefix leads to better performance as the guard interval gets bigger and giving

more time for the reflections of each OFDM symbol to arrive and then get discarded.

However, longer cyclic prefix requires adding more overhead to the signal and thus

increasing the cost of transmission. Thus, we need to choose the length of the cyclic

prefix that offers the best overall performance. We tested different scenarios where the

length of the cyclic prefix was 50%, 25%, 12.5%, and 6.25% of each OFDM symbol.

The same signal for the frequency spacing test was used in this test and the results are

31

illustrated in figure 3.5. The results show that for low SNR, the smaller percentages of

cyclic prefix were slightly better because most of the errors were caused by noise rather

than ISI. Thus, the extra cost of overhead for longer cyclic prefix made the performance

slightly worse. But for larger SNR, most of the errors are caused by ISI so the longer the

cyclic prefix, the better the performance gets. The field testing done in [45] showed that

the signal strength was between 0.2V to 1V while the noise was 1mV. This means that

we expect to operate with an SNR for 45-60dB. Therefore, we will choose the 50%

cyclic prefix for the rest of the simulations in this chapter.

Figure 3.5: Effect of cyclic prefix length on the performance of OFDM in pipe

strings

32

Effect of Bandwidth

We would like to test the effect of the bandwidth (number of passbands) on the

overall performance of the proposed OFDM communication system. From what we

know about the channel’s frequency response, the passbands get weaker and narrower

for higher frequencies. This means that from the point of view of power efficiency, it is

more efficient for the signal bandwidth to be accommodated inside one passband and the

more passbands are added, the worse the performance will get. However, since the

application requires the bandwidth to span multiple passbands, we need to know many

passbands we can use before performance is significantly degraded. We ran a simulation

where the number of passbands included in the signal bandwidth was incrementally

increased and used the proposed convolutional code with QPSK modulation. Figure 3.6

illustrates the results and confirms that as the number of passbands increases, the

performance gets worse. In this test, the signal was measured at the 10th pipe string out

of 50.

33

Figure 3.6: Effect of bandwidth on the performance of OFDM in pipe strings

Effect of Channel Coding and Modulation Order

In order to accommodate the application requirements, we need to find the right

combination of modulation order and code rate. During the design process, we may have

to compare a system with a lower modulation order and a higher code rate against

another communication system with a higher modulation order and a lower code rate.

Generally, the number of errors caused by increasing the modulation order is bigger than

the increase in error-correction capability caused by lowering the code rate. To illustrate

this with an example, a QPSK system with a rate 1/2 code is better than an 8-PSK

system with a rate 1/3 code which is in turn better than a 16-PSK system with a rate 1/4

code as shown in figure 3.7.

34

Figure 3.7: Comparison of performance for modulated systems with convolutional

codes

When channel coding is used, it generally offers a great advantage over an

uncoded system in terms of bit error rate. However, this is only true when the SNR is

high enough because at low SNR, error-correction codes will perform worse than the

uncoded systems as the number of errors exceeds the error-correction capability of the

code. In this scenario, the closest codeword to the received codeword will be different

from the transmitted codeword. Hence, the decoding algorithm will return the wrong

codeword and end up creating more errors. For each combination of modulation and

error-correction code, there is an SNR threshold where the coded system overtakes the

uncoded system and starts to perform better from that point forward. This threshold will

get higher as the modulation order gets higher. For example, the coded system will

quickly outperform the uncoded system when BPSK or QPSK are used. But as the

35

modulation order increases to 8, 16, 32, and so on, the SNR threshold will quickly get

higher as shown in figures 3.8-3.10 in an AWGN channel.

Figure 3.8: Comparison of coded and uncoded 8-PSK in an AWGN channel

Figure 3.9: Comparison of coded and uncoded 16-PSK in an AWGN channel

36

Figure 3.10: Comparison of coded and uncoded 32-PSK in an AWGN channel

In addition, the presence of a channel gain can positively or negatively affect this

SNR threshold. If the channel gain is positive (in dB) and boosts the signal, the SNR

threshold will get lower. If the channel gain is negative (in dB) and weakens the signal,

the SNR threshold will get higher. This phenomenon is shown in figures 3.11-3.13 for a

16-QAM system. When the modulation order is further increased to 64-QAM in figure

3.14, the combination of the negative channel gain and the high modulation order will

push the SNR threshold much higher.

37

Figure 3.11: Performance of 16-QAM in the presence of 1dB channel gain

Figure 3.12: Performance of 16-QAM in the presence of -1dB channel gain

38

Figure 3.13: Performance of 16-QAM in the presence of -3dB channel gain

Figure 3.14: Performance of 64-QAM in the presence of -3dB channel gain

39

Design Process and Results

Finding the best possible communication system requires the optimization of five

different parameters: data rate (or application), propagation distance, modulation order,

code rate, and the bit error rate. This will lead to an almost infinite number of possible

designs. If we fix a subset of these parameters and modify the others to find the best

system, the result will be different if we fix another subset of these parameters and

modify the remaining ones. For example, if we want to design a system to operate over a

fixed short distance, a system with larger bandwidth (more passbands) may perform

better than a system with a narrower bandwidth (less passbands). However, if we fix the

data rate, a system with less passbands will perform better than a system with more

passbands over longer distances.

In order to limit the scope of the design process, we will fix the data rates for

each application, as in table 3.1, and attempt to find the system that can travel the longest

distance before the bit error rate falls below 0.1%. We came up with a design procedure

and an elimination process to limit the number of possible designs for each application.

This procedure may not lead to the best possible design but will try to get as close as

possible to it. There are three guidelines that we will use during this process to eliminate

some of the possible designs. These guidelines are:

- If two communication systems use the same modulation order and different

numbers of passbands. The one with more passbands will be eliminated in favor

of the one with less passbands. This is justified by the results of figure 3.5.

40

- A communication system with a higher modulation order and a lower code rate

will be eliminated in favor of a communication system with a lower modulation

order and a higher code rate. This is justified by the results of figure 3.6.

- A communication system with a very high modulation order (greater than 4096)

will be eliminated to reduce receiver complexity and avoid very poor

performance.

The design process will follow the next steps for each application:

- Step 1: Given the required data rate, find the required number of bits per symbol

and the modulation order 𝑀 for each number of passbands by:

 𝑀 = 2⌈
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
⌉
 (3.2)

- Step 2: Eliminate any communication system if there is another one with the

same modulation order and less passbands or if 𝑀 > 4096.

- Step 3: For each passband from the remaining options, calculate the required

code rate by:

 𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒 =
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × log2𝑀
 (3.3)

- Step 4: Choose a new code rate from a selection of available rates such as: 1/3,

1/2, 2/3, 3/4, and 1 (no coding). Calculate the new modulation order by:

 𝑀𝑛𝑒𝑤 = 2
⌈

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ×𝑁𝑒𝑤 𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒

⌉
 (3.4)

- Step 5: Choose the lowest code rate from the selection such that 𝑀𝑛𝑒𝑤 ≤ 2𝑀.

- Step 6: Calculate the resulting data rate and verify that it is greater than or equal

to the data rate required by the application.

41

- Step 7: Look up the required SNR to reach a bit error rate of 0.1% for 𝑀-ary

modulation and the coding gain for the chosen code if applicable.

- Step 8: Calculate the SNR margin by:

𝑆𝑁𝑅 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑁𝑅 − 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝑁𝑅 𝑓𝑜𝑟 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝐶𝑜𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛

(3.5)

- Step 9: Approximate the achievable distance by finding how many pipe segments

the signal can travel before the channel gain is below −𝑆𝑁𝑅 𝑀𝑎𝑟𝑔𝑖𝑛. We will

use the results of figure 2.3 and perform interpolation if necessary. For a system

with multiple passbands, we will only look at the channel gain of the last

passband since losing the symbols transmitted at that passband will result in a bit

error rate that exceeds the chosen 0.1% limit.

- Step 10: Choose the system that can achieve the longest distance.

Tables 3.2 and 3.3 show the results of step 1 for both image applications.

42

Table 3.2: Required modulation order for a colored image (16 colors)

Bandwidth

Required Number of

Bits/Symbol

Modulation Order

10 Passbands (1484 Hz) 2 4

9 Passbands (1400 Hz) 2 4

8 Passbands (1304 Hz) 2 4

7 Passbands (1188 Hz) 2 4

6 Passbands (1060 Hz) 2 4

5 Passbands (926 Hz) 2 4

4 Passbands (768 Hz) 2 4

3 Passbands (596 Hz) 3 8

2 Passbands (412 Hz) 4 16

1 Passband (214 Hz) 8 256

43

Table 3.3: Required modulation order for a colored image (256 colors)

Bandwidth

Required Number of

Bits/Symbol

Modulation Order

10 Passbands (1484 Hz) 3 8

9 Passbands (1400 Hz) 3 8

8 Passbands (1304 Hz) 3 8

7 Passbands (1188 Hz) 3 8

6 Passbands (1060 Hz) 3 8

5 Passbands (926 Hz) 4 16

4 Passbands (768 Hz) 4 16

3 Passbands (596 Hz) 6 64

2 Passbands (412 Hz) 8 256

1 Passband (214 Hz) 15 32768

After the elimination process in step 2, the remaining steps were performed on

the surviving systems and the results are summarized in tables 3.4 and 3.5 where the

initial SNR was 60dB.

44

Table 3.4: Approximate achievable distance for a colored image (16 colors)

Bandwidth 4 Passbands 3 Passbands 2 Passbands 1 Passband

Required Code

Rate

1 0.86 0.93 0.9

Modulation

Order

4 8 16 256

New Code Rate 2/3 3/4 3/4 1

New

Modulation

Order

8 16 32 256

New Data Rate 1544 1597 1545 1712

Required

Modulation

SNR (dB)

10 11 14 22

SNR Margin

(dB)

56 55 52 38

Approximate

Achievable

Distance (No.

Pipes)

378 490 463 412

45

Table 3.5: Approximate achievable distance for a colored image (256 colors)

Bandwidth 6 Passbands 4 Passbands 3 Passbands 2 Passbands

Required Code

Rate

0.96 1 0.86 0.93

Modulation

Order

8 16 64 256

New Code Rate 3/4 1 3/4 1

New

Modulation

Order

16 16 128 256

New Data Rate 3180 3072 3129 3296

Required

Modulation

SNR (dB)

11 11 18 22

SNR Margin

(dB)

55 49 48 38

Approximate

Achievable

Distance (No.

Pipes)

202 336 434 355

46

According to the results of table 3.4 and 3.5, we need to use 3 passbands for both

applications. The 16 colors image requires 16-QAM modulation with a rate 3/4 code

while the 256 colors image requires 128-QAM modulation with a rate 3/4 code. Both

systems were implemented and signals for the 16 and 256 colors image can respectively

travel slightly more than 6km (600 pipe segments) and between 5km and 6km (500-600

pipe segments) before falling below the bit error rate threshold of 0.1%. At 6km, the bit

error rate for the 16 colors image was 0.085%. For the 256 colors image, the bit error

rate was 0.035% at 5km and 0.65% at 6km. Both systems outperformed the expectations

in tables 3.4 and 3.5.

47

CHAPTER IV

LOW DATA RATE COMMUNICATION SYSTEM

Signaling Format

We now proceed to designing a single carrier narrowband communication system

for the first mode of transmission in our application where sensor readings are

periodically transmitted through acoustic vibration of the pipes. In this application, the

required data rate (1-50 bits/sec) is small enough for the signal bandwidth to fit inside

one passband. The sensor readings consist of a few dozen bits transmitted at low power

and very low data rates. We expect a packet of 10-30 information bits to be encoded

using an error-correction code and modulated using a BPSK scheme.

BPSK is chosen in this scenario because it offers the best power efficiency

among all M-ary PSK, M-ary PAM, and M-ary QAM modulation schemes. Meanwhile,

M-ary FSK offers better power efficiency for large M and is equivalent to an orthogonal

BPSK signal encoded with a Hadamard code. However, orthogonal codes have a very

low code rate of
𝑘

2𝑘
 where 𝑘 is the number of information bits. It will be demonstrated

later than low code rates do not offer a better performance for short packets when

synchronization is taken into account. Hence, BPSK remains the best option for

modulation.

As for channel coding, we propose using a convolutional code to protect the

information bits from errors. The reasoning behind this decision is that Turbo and LDPC

codes are not suitable for short packets while block codes that are suitable for short

48

packets do not have a good enough error-correction capability. Hence, convolutional

codes can operate on short packets while offering a decent error-correction capability.

When it comes to pulse shaping, it will be demonstrated later that the choice of the pulse

shape affects synchronization and the choice of the symbol rate affects the level of ISI in

the received signal. Both parameters will have to be optimized to get the best possible

performance under those circumstances. The carrier frequency will have to be chosen at

the center of the passband if we intend to occupy the entire passband. If we want to take

advantage of the positive channel gain when the measurements are taken in the middle

of the pipe string and the passband is slanted, we may want to skew the carrier frequency

toward the start of the passband.

In general, a communication system works in the following manner: information

bits get encoded with an error-correction code and modulated. Then, they get up-

sampled from one sample per symbol to match the sampling rate of the pulse shaping

filter. Next, the up-sampled signal goes through the pulse shaping filter to receive its

final form before transmission. The signal is then mounted on a carrier frequency and

transmitted through the channel to reach the receiver where the mixers will bring it down

to its baseband frequency. The received signal that has been corrupted by the channel is

then put through the matched filter which is matched to the pulse shaping filter. From

here, the synchronization stages begin.

Synchronization for Short Packets

Synchronization is necessary because the receiver does not know exactly when a

signal is transmitted. There is also an unknown propagation delay where the signal

49

traveled for a duration of time between the transmitter and the receiver. The goal of

synchronization is to let the receiver know exactly when the signal starts and to undo any

phase offset caused by the channel so that the signal can be processed and the

meaningful data can be successfully extracted. First at the coarse frame synchronization

stage, the receiver tries to get a rough estimate of where the signal begins. Then, at the

symbol synchronization stage, the receiver attempts to find the offset at which to down-

sample the output of the matched filter. Once down-sampling has been performed, the

receiver will find the exact starting position of the signal and correct any phase offset.

From there, the signal is demodulated and decoded to extract the desired information.

The structure of this communication system is illustrated in figure 4.1.

Figure 4.1: General structure of a communication system

50

In this dissertation, we will measure the performance of our communication

system by the probability of packets loss. It is the probability that after all

synchronization stages are done and after decoding the signal, the resulting decoded

information bits are different from the transmitted information bits in at least one

location. Our goal is to minimize this probability and the complexity of the

synchronization process as much as possible by controlling different parameters and by

choosing what we believe is the appropriate order for the different synchronization

stages. We will perform all of our analysis on an AWGN channel for simplicity and then

we will apply our results on the pipe strings.

At the frame synchronization stage, we will be using a decoder-assisted method

where the decoding algorithm for an error-correction code will determine the correct

time delay. Our signal is very short in time and is placed inside a much larger

uncertainty window at an unknown time. Using the decoder-assisted frame synchronizer

will create an issue of complexity if each time delay is assumed to be equally likely to be

the correct one. Therefore, we propose starting with a simple coarse and symbol

synchronization algorithm that will narrow down the initial uncertainty window to a

much smaller uncertainty window where complexity will be greatly reduced. We will

illustrate this with an example. Let us suppose that 10 information bits were encoded to

produce 20 coded bits. These coded bits went through a pulse shaping function to

produce 200 samples where each coded bit is represented by 10 samples. Let us suppose

that they are placed within an uncertainty window of size 2000 samples at a randomly

chosen location. This means that there are 1800 possible time delays and our decoder

51

will to have to treat each one of them as a likely time delay and will have to run the

decoding algorithm 1800 times.

Now let us suppose that, through coarse synchronization, we managed to shrink

this window to twice the size of the transmitted signal where it contains 400 samples.

Inside this smaller uncertainty window, there are only 200 possible time delays so the

decoder will have to run the decoding algorithm 200 times instead of 1800 times. We

can reduce the complexity further through symbol synchronization techniques. Symbol

synchronization helps the receiver find the correct time to down-sample the contents of

the received window to retrieve the coded bits for the decoding procedure. If done

correctly, we can further reduce the number of possible time delays to 20 times only.

The decoder will now have to run the decoding algorithm 20 times instead of 1800 times

without coarse and symbol synchronization.

If we proceed to perform frame synchronization without symbol synchronization

first, our chances of decoding the packet correctly will be greatly diminished as shown

by the simulation results in figure 4.2 where the probability of packet loss was simulated

for a packet of 10 information bits encoded using a rate 1/2 convolutional code in a

window 20 times the size of the packet. In figure 4.2, we down-sampled the signal at on

offset of 0.1𝑇𝑠 and 0.2𝑇𝑠, where 𝑇𝑠 is the symbol duration, to indicate how much loss is

induced by not performing symbol synchronization before frame synchronization.

52

Figure 4.2: Effect of incorrect symbol synchronization on the probability of packet

loss for a rate 1/2 convolutional code with 10 information bits

Let us also suppose that the channel caused a phase offset where the received

samples were rotated by an unknown amount in either direction. Given that the frame

synchronization procedure relies on the coded bits modulated using BPSK instead of the

overall energy of the packet, it must be done coherently. Therefore, we find it necessary

to perform phase synchronization and undo this offset before we proceed to frame

synchronization. In figure 4.3, we show the effect of performing frame synchronization

without compensating the phase offset first. Coarse and symbol synchronization were

assumed to be perfect in this simulation.

53

Figure 4.3: Effect of phase offset on the probability of packet loss for a rate 1/2

convolutional code with 10 information bits

54

CHAPTER V

COARSE AND SYMBOL SYNCHRONIZATION FOR VERY SHORT PACKETS

Problem Setup

At the beginning of the coarse synchronization stage, the signal is somewhere

inside a large uncertainty window surrounded by Gaussian noise and the goal is to shrink

it to a much smaller window where the signal is sure to be found. At this early stage,

there are not many options available. We can either use a pilot sequence to crudely

identify the beginning of the signal or try to detect an energy peak as the signal is likely

to have more energy than the noise. We cannot use error-correction coding to try to

identify a valid code word inside the window as we have to down-sample the signal and

correct the phase offset first. The use of a pilot sequence on a short packet is not energy-

efficient as will be demonstrated later. Thus, our only choice is to detect an energy peak.

Let us assume a BPSK modulated signal is transmitted in an Additive White

Gaussian Noise channel. Let 𝑛 be the total number of coded bits in the transmitted

packet and 𝑘 be the number of information bits. Let 𝑁𝑠𝑝𝑠 be the number of samples per

symbol so the transmitted symbol has 𝑁 = 𝑛𝑁𝑠𝑝𝑠 samples of which 𝐾 = 𝑘𝑁𝑠𝑝𝑠 samples

correspond to the information portion of the signal. Figure 5.1 illustrates the

synchronization problem as it shows the output of the matched filter as a function of

time.

55

Figure 5.1: Output of the matched filter

In figure 5.1, 𝑀 is the coefficient of the large uncertainty window such that this

window is 𝑀 times the length of the information portion of the signal (excluding any

coded bits or overhead), 𝑚 is a rational coefficient indicating the size of the smaller

uncertainty window such that 𝑚𝑁 is an integer, 𝑡0 is the signal starting time, and 𝑟[𝑡] is

a sample of the received signal at the output of the matched filter:

 𝑟[𝑡] = {
𝑠[𝑡 − 𝑡0] +𝑊[𝑡], 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑁 − 1

𝑊[𝑡], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.1)

where 𝑠[𝑡] is the transmitted signal and 𝑊[𝑡] is a Gaussian noise sample from 𝒩(0, 𝜎2)

such that 𝜎2 =
1

𝑘

𝑛
×
𝐸𝑏
𝑁0

. The notation 𝒩(𝜇, 𝜎2) indicates a Gaussian distribution with mean

𝜇 and variance 𝜎2.

At the coarse and symbol synchronization stage, a sliding window having a size

of 𝑁 samples is swept across the samples of the matched filter output. In each case, the

window is delayed by one sample. Then, its content gets down-sampled by a factor of

56

𝑁𝑠𝑝𝑠 and the energy for each set of samples is calculated each time. We define 𝑆𝑡 to be

the energy of each sliding window:

 𝑆𝑡 =∑|𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]|
2

𝑛−1

𝑖=0

 𝑓𝑜𝑟 𝑡 = 0,1, … , (𝑀 − 1)𝐾 − 1 (5.2)

Then we will choose the sliding window that returned the highest energy. Let 𝑡0̂

be a coarse estimate of 𝑡0 that is found by:

 𝑡0̂ = argmax
𝑡=0,…,(𝑀−1)𝐾−1

𝑆𝑡 (5.3)

Once we found 𝑡0̂, we step back by
𝑁(𝑚−1)

2
 samples to center the signal inside the

smaller uncertainty window and select the next 𝑚𝑁 samples. The content of the smaller

window is then down-sampled by 𝑁𝑠𝑝𝑠 producing the received samples that will be

forwarded to the phase and frame synchronizer. If we choose to accept 𝑡0̂ as the correct

time delay and proceed to decoding immediately, we will see a substantial loss in

performance as indicated by the results in figure 5.2. Therefore, we need a much finer

synchronization procedure to receive the packet correctly.

57

Figure 5.2: Comparison between decoder-assisted synchronization and energy-

based synchronization for a (24,10,3) convolutional code

For convolutional codes, the notation (𝑛, 𝑘, 𝐾𝐿) will be used across this

dissertation to respectively indicate the total number of coded bits 𝑛, the number of

information bits 𝑘, and the constraint length of this code 𝐾𝐿. When convolutional codes

are used on short packets, it is important to distinguish between the designed code rate

and the effective code rate. We typically terminate the message with 𝐾𝐿 − 1 zeros to

reset the encoder back to the all zero state, those extra zeros count as overhead when

calculating the code rate. Both desired and effective code rates are calculated as follows:

 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 =
𝑘 + 𝐾𝐿 − 1

𝑛
 (5.4)

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 =
𝑘

𝑛
 (5.5)

58

Effect of Uncertainty Window Size

In a typical monitoring sensor application where short packets are used, a

battery-powered sensor is sleeping most of the time to conserve power but wakes up in a

periodic fashion to make a reading of some parameter, convert that reading into a short

sequence of bits, encode it, and then transmit it at the lowest possible SNR that

guarantees an acceptable probability of error. On the other side, the receiver has been

recording data for hours if not days expecting a transmission at any time. When this

transmission takes place, the receiver has to sort through hours of noisy recordings to

find the signal of interest. Since the transmitted packet is short, the signal will also be

short in the time domain and is not likely to exceed 1 second. This less than 1 second

signal is now concealed within hours of random noise. Let’s illustrate this with an

example: if a signal consisting of 10 bits is transmitted every hour at a low bit rate of 10

bits/sec, the signal lasts exactly 1 second and the receiver has an uncertainty window of

3600 seconds where the 1 second signal is. Trying to find this signal without a long pilot

sequence and at a relatively weak SNR is like trying to find a needle in haystack. The

chances of finding this signal successfully can be very low and unsatisfactory.

To quantify this problem, we need to run some simulations that can measure our

chances of a successful transmission. We will measure the performance of the coarse

and symbol synchronization algorithms by the probability of signal capture error

(PSCE). The PSCE is the probability that a signal does not fall in its entirety inside the

smaller uncertainty window after coarse and symbol synchronization. The main

parameter that keeps us from getting an acceptable PSCE is the size of the large initial

59

uncertainty window described here by the coefficient 𝑀. In these simulation, we

uniformly generated 10 information bits, encoded them using a convolutional code,

modulated them using a BPSK scheme, and then placed them inside a window that is 𝑀

times the size of the signal with additive noise simulating the AWGN channel. We ran

the coarse and symbol synchronization algorithm and calculated the PSCE by using the

Monte Carlo method. We count the number of times that the entire signal does not fall

inside the smaller window and divide it by the total number of trials. The results of these

simulations are shown in figure 5.3. In this particular simulation, a (24,10,3)

convolutional code was used.

Figure 5.3: Probability of signal capture error for a (24,10,3) convolutional code

with a window M times the signal

60

These results indicate that the probability of capturing the entire signal in the

smaller window rapidly increases as the window gets larger. If the entire signal is not

captured in the smaller window, the chances of correctly decoding the packet are almost

zero. At this point, we need alternative solutions. In our original problem of transmitting

sensor readings used to monitor some parameter, one possible solution is transmission

scheduling. In this setting, we program both the sensor and the receiver to wake up at a

known time to record the value of the desired parameter and go back to sleep. For

example, at the top of every hour, the sensor will make the reading, send it through, and

go back to sleep. The receiver will wake up around the same time expecting an incoming

signal, record it, process it, and then go back to sleep. This can result in a much smaller

uncertainty window where 𝑀 is relatively small enough for us to be able to reliably find

the signal. However, if an emergency transmission is to be made, we will have to make a

decision depending on the urgency of this transmission. For example, if the message has

a lower urgency and just a warning signal, we may have to wait until it is time for the

next scheduled transmission and give a delayed response. However, if the urgency is

high, we may have to accept a higher cost of transmission such as boosting the SNR or

adding a long pilot sequence. Since emergency transmission do not occur very often and

may be even rare, it may be feasible depending on the application to choose the latter

option. Another option is to have a limited number of messages to transmit in case of

emergency and pre-program those messages into the receiver so that the receiver can

scan the observation window for these specific signals and be able to decode them. For

example, in the context of oil and gas industry, if a leak is detected, the sensor will just

61

transmit the message “leak” or “leak detected” and the receiver knowing exactly what

the binary sequence for this message is can search for it and decode it.

Effect of Pulse Shaping

It is important to note that the choice of the pulse shape will affect the

performance of this coarse and symbol synchronization technique. In order to maximize

the chances of 𝑡0̂ being as close as possible to 𝑡0, we believe the pulse shape needs to

satisfy the following criteria:

- For each symbol period, the autocorrelation of the pulse shaping function needs

to produce only one clear peak. This makes the correct sampling time stand out

above all the other possible sampling times.

- The pulse shaping function needs to cross 0 between two consecutive symbols.

This is done to force the output of the match filter to change value between two

identical consecutive symbols making it more likely to detect the peak at the

correct time delay.

- The autocorrelation of the pulse shaping function needs to avoid immediate

transition from its peak to zero and should have a relatively slow transition. This

is done so that if the estimated time delay is off from the correct one by a few

samples, we do not lose too much signal strength.

To test the validity of these criteria, we ran several Monte Carlo simulations

where each time, a different pulse shaping filter was used. Figure 5.4 shows the results

of these simulations on the (24,10,3) convolutional code where a square pulse is

compared to a triangular pulse, a delta function, and a half-square pulse where the square

62

function occupies half the duration of the pulse. The square pulse does not satisfy the

second criterion while the delta function does not satisfy the third criterion. The triangle

and half-square pulses satisfy all the criteria.

Figure 5.4: Effect of pulse shaping on the probability of packet loss for a (24,10,3)

convolutional code

According to figure 5.4, a rectangular pulse will perform worse than all the

others for short packets. This is due to the occurrence of consecutive 1s or 0s in the

transmitted sequence. For a square pulse, identical consecutive symbols will result in a

straight line at the output of the matched filter as shown in figure 5.5. When corrupted

by noise, it is possible for incorrect sampling times to get additive constructive noise that

will result in a higher energy than the correct sampling time. However, identical

63

consecutive symbols on a triangular pulse will have a dip between them as shown in

figure 5.6 thus minimizing the chances of an incorrect sampling time rising above the

correct one. On the other hand, this problem does not occur for a long packet because the

event described above will not affect the overall energy of the much longer packet.

However, a triangular pulse or a delta function will have a wider bandwidth compared to

the square pulse. In the remaining sections of this paper, a triangular pulse was used in

all simulations since the delta function has an infinite bandwidth that will not fit inside a

passband.

Figure 5.5: Matched filter output for a square pulse

64

Figure 5.6: Matched filter output for a triangular pulse

Theoretical Approximation

In order to verify these simulation results, we would like to set up a theoretical

model that can match and predict the PSCE as much as possible. Finding an exact

expression for the PSCE can be difficult due to the dependence between the sliding

windows that share multiple common samples. Thus, we will settle for a close

approximation. There are two key assumptions here. First, let us assume that we are

working at one sample per symbol. Second, when we find the coarse estimate of the time

delay 𝑡0̂, the smaller window of size 𝑚𝑛 is large enough to encompass all the samples of

𝑟[𝑡] that are found in window that share common samples with 𝑆𝑡0. Therefore, we

assume that the different random variables representing the energy 𝑆𝑡 are independent

and share no common samples. This will result in 𝑀 different 𝑆𝑡 that are far and

independent from each other. In simple terms, instead of using (𝑀 − 1)𝐾 random

65

variables to compute the PSCE, we will only use 𝑀 independent random variables. Let

𝑍𝑖
(𝑡) be the ith sample in the sliding window at time 𝑡 out of 𝑀 possible windows, then:

 𝑍𝑖
(𝑡) = 𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠] 𝑓𝑜𝑟 𝑡 = 0,1, … ,𝑀 − 1 (5.6)

 𝑆𝑡 =∑|𝑍𝑖
(𝑡)|

2
𝑛−1

𝑖=0

 𝑓𝑜𝑟 𝑡 = 0,1, … ,𝑀 − 1 (5.7)

In order to calculate the PSCE, we need to know the distribution of 𝑆𝑡 which can

be determined by finding the distribution of |𝑍𝑖
(𝑡)|

2
. We know that |𝑍𝑖

(𝑡)|
2
 follows a

Chi-Squared distribution but since 𝑆𝑡 is a sum of 𝑛 independent random variables, we

can use the Central Limit Theorem to approximate it to a Gaussian random variable. In

Appendix A, we show that for a BPSK signal:

 𝐸 [|𝑍𝑖
(𝑡)|

2
] = {

𝜎2 + 1, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝜎2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.8)

 𝑉𝑎𝑟 (|𝑍𝑖
(𝑡)|

2
) = {

𝜎4 + 2𝜎2, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝜎4, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.9)

Therefore, 𝑆𝑡0~𝒩(𝑛(𝜎
2 + 1), 𝑛(𝜎4 + 𝜎2)) and 𝑆𝑡~𝒩(𝑛𝜎

2, 𝑛𝜎4) otherwise. From

there, the probability of capturing the entire signal is approximated by:

 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) ≈ 𝑃(⋃ 𝑆𝑡0 ≥ 𝑆𝑡

𝑀−1

𝑡=0,𝑡≠𝑡0

) = 𝑃(⋃ 𝑆𝑡 ≤ 𝑠

𝑀−1

𝑡=0,𝑡≠𝑡0

|𝑆𝑡0 = 𝑠) (5.10)

 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) ≈ ∫ (1 − 𝑄 (
𝑠 − 𝑛𝜎2

√𝑛𝜎2
))

𝑀−1
1

√2𝜋𝑉𝑎𝑟(𝑆𝑡0)
𝑒

−(𝑠−𝐸[𝑆𝑡0])
2

2𝑉𝑎𝑟(𝑆𝑡0) 𝑑𝑠
∞

−∞

 (5.11)

The PSCE can then be approximated by:

66

 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟) ≈ 1 − 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) (5.12)

We tested this approximation of the PSCE and we found it to be very close the

exact PSCE obtained from Monte Carlo simulations in the scenarios of interest. Figures

5.7 and 5.8 show the comparison between the two for a rate 1/2 convolutional code. The

larger and initial observation window was set to respectively 10 and 5 times the size of

the signal while the smaller window was three times the size of the signal. Both cases

show that the difference between the approximated PSCE and the actual PSCE is less

than 0.5dB. This indicates that our theoretical model can sufficiently approximate the

PSCE for relatively small uncertainty windows. However, when the uncertainty window

is much larger, such as for 𝑀 = 100 or 𝑀 = 1000, the approximation errors become too

large to neglect and the proposed model is no longer accurate.

Figure 5.7: Probability of signal capture error with a window 10 times the signal

67

Figure 5.8: Probability of signal capture error with a window 5 times the signal

68

CHAPTER VI

FRAME SYNCHRONIZATION FOR VERY SHORT PACKETS

Problem Setup

While coarse synchronization tries to get a rough estimate of where the signal

begins, frame synchronization aims at finding the exact time delay. This makes frame

synchronization more complicated than coarse synchronization as there is no room for

error especially when very short packets are involved. If the estimated time delay is off

from the correct time delay by even 1 sample, the entire decoded packet will be different

from the transmitted packet and all the information will be lost.

After both coarse and symbol synchronization stages are completed, we expect to

have a small observation window, likely twice the size of the signal, that has been down-

sampled to where each sample represents only 1 symbol. The desired signal is

somewhere inside this window at an unknown location and surrounded by random noise.

Let 𝒔 be the vector containing the transmitted symbols, 𝒘 is a vector containing the

noise samples, 𝑛 is the length of the signal in symbols, 𝑚 is the coefficient of the smaller

observation window as indicated in the previous chapter, and 𝑡0 is the time delay that we

are looking for. Figure 6.1 illustrates the described frame synchronization problem.

69

Figure 6.1: General received frame structure

All the samples in figure 6.1 can be summarized in the vector 𝒓 containing all the

received samples:

 𝒓 = [0,0, … ,0, 𝑠0, 𝑠1, … , 𝑠𝑛−1, 0, … ,0] + [𝑤0, 𝑤1, … , 𝑤𝑚𝑛−1] (6.1)

Assuming the entire signal was captured during coarse and symbol

synchronization stages, the correct time delay 𝑡0 is equally likely to be somewhere

between 0 and (𝑚 − 1)𝑛 − 1. We need to come up with a procedure to reliably find 𝑡0.

If the information bits were encoded using an error-correction code at the transmitter, we

propose a simple and straight forward synchronization algorithm that can achieve

optimal if not perfect synchronization in multiple scenarios.

70

Decoder-Assisted Frame Synchronization

Let us assume that 𝑘 information bits were encoded at the transmitter with an

(𝑛, 𝑘) error-correction code where 𝑛 is then number of coded bits. This (𝑛, 𝑘) code may

not necessarily be a standard block code but can be a convolutional or LDPC code. Such

codes typically do not have a size limit and usually operate on an infinitely long stream

of bits but since we are working with very short packets, we will treat them as block

codes. The proposed frame synchronization algorithm consists of sliding a window 𝑪

that has the same length 𝑛 as the transmitted code that will test the possibility of each

time delay being the correct one. The window 𝑪 starts at 𝑟0 selecting the next 𝑛 samples

and slides all the way to 𝑟(𝑚−1)𝑛−1 selecting the last 𝑛 samples in the observation

window. Each time, we will evaluate a correlation metric and choose the time delay that

maximizes this metric. This is done by following these steps for each possible time

delay:

- Step 1: De-interleave the 𝑛 coded bits in case interleaving was used.

- Step 2: Decode the 𝑛 coded bits by following the decoding algorithm for the

chosen (𝑛, 𝑘) code.

- Step 3: Re-encode the resulting 𝑘 information bits according to the encoding

algorithm for the (𝑛, 𝑘) code.

- Step 4: Re-interleave the 𝑛 coded bits in case interleaving was used.

- Step 5: Re-modulate the resulting 𝑛 coded bits according to the modulation

scheme that was used at the transmitter. This will create a new window 𝑪′.

71

- Step 6: Calculate the correlation 𝜌𝑗 between the contents of 𝑪 and the contents of

𝑪′ according to:

 𝜌𝑗 = ∑𝐶𝑖

𝑛−1

𝑖=0

𝐶′𝑖 𝑓𝑜𝑟 𝑗 = 0,1, … , (𝑚 − 1)𝑛 − 1 (6.2)

- Step 7: Choose the time delay that maximizes the correlation according to:

 𝑡0 = argmax
𝑡=0,…,(𝑚−1)𝑛−1

𝜌𝑡 (6.3)

The main idea behind this method is the when we are observing an incorrect time

delay, if we decode and then re-encode the contents of this window, we will end up with

an entirely different window that looks nothing like what we observed. However, if we

are looking at the correct time delay, repeating this procedure will result in a window

that is very similar to the one we are observing.

Maximum Likelihood Frame Synchronization

In order to test the reliability of the proposed frame synchronization algorithm,

we need to compare it to an optimal Maximum a Posteriori (MAP) frame

synchronization algorithm. But first we need to derive it. A MAP frame synchronization

algorithm requires choosing the time delay that maximizes the posterior probability

density function (pdf) 𝑓(𝑡|𝒓) for time delay 𝑡 given the received samples 𝒓 in equation

(6.1). We start by applying the Bayes rule [46]:

 𝑓(𝑡|𝒓) =
𝑓(𝒓|𝑡)𝑃(𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦)

𝑓(𝒓)
 (6.4)

72

Since we are assuming that each time delay is equally likely to be the correct

one, maximizing 𝑓(𝒓|𝑡) is equivalent to maximizing 𝑓(𝑡|𝒓). The problem is then

transformed from MAP to ML and 𝑓(𝒓|𝑡) can be expressed by:

 𝑓(𝒓|𝑡) =∑ 𝑓(𝒓|𝑡, 𝒔)𝑃(𝒔 𝑤𝑎𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑)
𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝒔

 (6.5)

where 𝒔 is one of the all possible modulated codewords and 𝑃(𝒔 𝑤𝑎𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑) =

1

2𝑘
 is the probability of uniformly choosing one codeword out of all possible 2𝑘

codewords to transmit. Then, 𝑓(𝒓|𝑡, 𝒔) is expressed by:

 𝑓(𝒓|𝑡, 𝒔) =
1

(√2𝜋𝜎2)
𝑚𝑛 𝑒

−∑ 𝑟′𝑖
2𝑚𝑛−1

𝑖=0
2𝜎2 (6.6)

where:

 𝑟′𝑖 = {
𝑟𝑖 − 𝑠𝑖−𝑡, 𝑓𝑜𝑟 𝑖 = 𝑡, 𝑡 + 1,… , 𝑡 + 𝑛 − 1

𝑟𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.7)

This means that for each possible time delay 𝑡, we first evaluate the likelihood of

𝒔 being the transmitted signal, we choose the most likely transmitted signal, and finally

evaluate the likelihood of the contents of the observed window being a transmitted signal

and the rest of the window being random noise. The correct time delay 𝑡0 is the one that

maximizes this likelihood and is found by:

𝑡0 = argmax
𝑡=0,…,(𝑚−1)𝑛−1

max
𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝒔

𝑓(𝒓|𝑡, 𝒔) (6.8)

73

Simulation

Now we are ready to test our proposed algorithm and compare it with the optimal

ML frame synchronization algorithm in addition to some of the existing methods in

literature. In particular, the method described in [41] involves computing a log-

likelihood ratio (LLR) of the syndrome obtained from the parity check matrix of the

code used during transmission. We tested this LLR frame synchronization algorithm on

LDPC codes since it was designed for codes having a sparse parity check matrix and we

believe it will be most effective in those scenarios. The parity check matrices for these

codes were generated using the Progressive Edge Growth algorithm in [47]. Both our

proposed algorithm and the ML algorithm derived above were tested on convolutional

codes.

In these simulations, 𝑘 information bits were randomly generated following a

uniform distribution and then encoded to obtain 𝑛 coded bits that were modulated using

a BPSK scheme. A random time delay 𝑡0 was uniformly generated between 0 and

(𝑚 − 1)𝑛 − 1 where 𝑚 = 2. The coded and now modulated symbols where then placed

inside a window of size 𝑚𝑛 at position 𝑡0 and Gaussian noise was added to simulate an

AWGN channel. Then we run each one of the algorithms describe above to estimate 𝑡0.

Once 𝑡0 is found, we extract the received signal and decode it. We then compare the

resulting 𝑘 bits with the transmitted information bits and count the probability of error. If

the decoded bits are different from the transmitted bits in at least 1 location, we declare

that the entire packet is lost. We then count the number of times this event occurs and

divide it by the number of times the packet was transmitted to estimate the probability of

74

packet loss using the Monte Carlo principle. We also experimented with different packet

sizes to see how much do we have to increase the packet size by to reach perfect

synchronization where the exact time delay is known. Figures 6.2-6.4 show the

simulation for 10, 20, and 100 information bits respectively.

Figure 6.2: Comparison of different frame synchronization algorithms for 10

information bits

75

Figure 6.3: Comparison of different frame synchronization algorithms for 20

information bits

Figure 6.4: Comparison of different frame synchronization algorithms for 100

information bits

76

As shown in figure 6.2, when the very short packet consisting of 10 information

bits was transmitted, the LLR synchronization algorithm was found to be 2.75dB behind

perfect synchronization. This significant loss is caused by the fact that when LDPC

codes are used on very short packets, the parity check matrix will not be sparse. Since

having a sparse parity check matrix is a requirement for the LLR synchronization

algorithm, it is to be expected that this method is not effective on very short packets.

Meanwhile, both the proposed and ML algorithm were only at a 1dB disadvantage from

perfect synchronization. This indicates that the proposed algorithm is equivalent to the

optimal ML synchronization algorithm in this scenario. In fact, whenever soft-decision

decoding is used, the proposed algorithm will always be equivalent to the ML algorithm.

When block codes are used, soft decision decoding requires searching through all

possible 2𝑘 transmitted codewords to find the closest codeword in terms of Euclidean

Distance much like the ML synchronization algorithm. When convolutional codes are

used, the soft-decision Viterbi algorithm [48] finds the closest codeword without having

to do an exhaustive search as described above. Hence, the proposed frame

synchronization algorithm accompanied with soft-decision decoding produces the

optimal probability of packet loss.

When the packet size is increased to 20 information bits, the ML synchronization

algorithm can no longer be applied as there is more than 1 million possible codewords.

But the proposed decoder-assisted algorithm reached the performance under perfect

synchronization while the LLR synchronization algorithm is still 2.25dB behind its

targeted performance. When the packet size reaches 100 information bits, the LLR

77

synchronization algorithm begins to close in on its corresponding performance at perfect

synchronization and is only 1 dB behind while the proposed algorithm matches the

performance of its targeted perfect synchronization almost perfectly. Another interesting

conclusion that can be drawn from figures 6.2-6.4 is that for very short packets,

convolutional codes are superior to LDPC codes but when the packet size grows, LDPC

code will catch up and overtake convolutional codes. This is demonstrated by the

performance under perfect synchronization for both coding schemes. Finally, a direct

comparison between the proposed algorithm and the LLR synchronization algorithm on

an (20,10) LDPC code is shown in figure 6.5 and indicates that the decoder-assisted

synchronization algorithm is still closer to the performance under perfect

synchronization than the algorithm in [41].

Figure 6.5: Comparison of different frame synchronization algorithms on a (20,10)

LDPC code

78

Effect of Coding Scheme

Since we are taking advantage of the presence of error-correction codes to

perform synchronization, our choice of coding scheme and decoding algorithm will

affect the overall performance. Therefore, we need to carefully decide how are we going

to encode and decode the transmitted packet. We demonstrated earlier that when soft-

decision decoding is used for synchronization, it is equivalent to the optimal ML frame

synchronizer and we see no point in settling for suboptimal performance using hard

decision decoding. Now we just need to find the best coding scheme to reliably transmit

and decode a very small and fixed number of bits.

For such a short packet, the candidates for best coding schemes are block codes,

convolutional codes, LDPC codes, and turbo codes. The latter coding scheme requires

very large packets in order for its interleaver to take full effect and it is hence eliminated.

Block codes such as Hamming, Golay, BCH, and Reed-Solomon can work well on short

packets but they do not have an efficient soft-decision decoding algorithm. Their hard-

decision decoding algorithms are suboptimal and their soft-decision decoding algorithms

require an exhaustive search over 2𝑘 possible transmitted codewords. This search will

have to be repeated 2(𝑚 − 1)𝑛 times to account for each possible time delay and phase

ambiguity resolution, as will be shown later. Therefore, it is not desirable to use block

codes since they require the decoding algorithm to run 2𝑘+1(𝑚 − 1)𝑛 times. As for

LDPC codes, they were designed to have a low density parity check matrix where 0s

massively outnumber 1s in the matrix. This will not be the case for short packets in order

to satisfy the parity check requirements. By elimination, we believe that convolutional

79

codes are the best to use in this scenario as they check all the boxes when it comes to

having an efficient soft decision decoding algorithm, not having any requirements over

the packet size or the parity check matrix.

We ran a few simulations to test the validity of this claim. We generated 12

information bits and encoded them using a (24,12) Golay code, a (24,12) LDPC code,

and a (28,12,3) convolutional code. As illustrated in figure 6.6, the convolutional code

clearly outperforms both the Golay and LDPC code.

Figure 6.6: Comparison of different codes for 12 information bits

One of the major advantages of convolutional codes is that, unlike block codes,

we do not have restrictions on the block size or the error-correction capability. So we

can tune convolutional codes to achieve a desired probability of packet loss while still

80

fixing the number of information bits. If our ultimate goal was to transmit 𝑘 information

bits at a given SNR and a probability of error that does not exceed a given upper limit,

we can experiment with the code rate and the constraint length of the convolutional code

to find the best option as will be shown later.

Phase Synchronization and Ambiguity Resolution

The proposed frame synchronization algorithm can also be used to help with

phase synchronization and ambiguity resolution because a codeword that had it bits

flipped is likely not going to be valid codeword and hence the frame synchronization

algorithm can tell us whether our phase estimate is correct.

Let us assume that the channel induced an unknown phase offset denoted by 𝜃.

After both coarse and symbol synchronization, we will end up with a received vector 𝒓

whose sampled can be expressed by:

 𝑟𝑡 = {
𝑠𝑡−𝑡0𝑒

𝑖𝜃 + 𝑤𝑡, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝑤𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.9)

where 𝑤𝑡 is a Gaussian noise sample and 𝑖 = √−1. The phase offset 𝜃 can be first

estimated by:

 𝜃 = 𝑎𝑛𝑔𝑙𝑒 (√
1

𝑚𝑛
∑ 𝑟𝑗2
𝑚𝑛−1

𝑗=0

) (6.10)

However, there is still 180˚ ambiguity since the signal constellation was either

rotated by 𝜃 in the counter clockwise direction or by 𝜃 + 𝜋. This is where Hypothesis

81

Testing can be used to solve this ambiguity. Let ℋ0 be the hypothesis that signal was

rotated by 𝜃 and ℋ1 be the hypothesis that the signal was rotated by 𝜃 + 𝜋.

We can test each hypothesis by rotating the received samples by 𝜃 and running

the frame synchronization algorithm to find the maximum correlation 𝜌𝑡0|ℋ0 , then we

can rotate the samples by 𝜃 + 𝜋 and run the frame synchronization algorithm again to

find the maximum correlation 𝜌𝑡0|ℋ1 . The phase offset will be decided by:

 𝜃 = {
𝜃, 𝑖𝑓 𝜌𝑡0|ℋ0 > 𝜌𝑡0|ℋ1

 𝜃 + 𝜋, 𝑖𝑓 𝜌𝑡0|ℋ0 < 𝜌𝑡0|ℋ1
 (6.11)

82

CHAPTER VII

THEORETICAL APPROXIMATION FOR THE PROBABILITY OF

SYNCHRONIZATION ERROR

In this chapter, we propose a theoretical model to approximate the probability of

synchronization error (PSE) for the decoder-assisted frame synchronization algorithm on

very short packets. This model is primarily used to support the simulation results shown

previously and provide a guideline to finding the PSE for high SNR situations that

require extremely long Monte Carlo simulations. Deriving the exact expression of the

PSE for a convolutional, block, and LDPC code can be difficult so we will primarily use

a random code in this model since the coded bits are independent and we will rely on

some approximations and estimations to find a tight upper bound on the PSE.

Expressing the Probability of Synchronization Error

The decoder-assisted frame synchronization for a signal encoded using a random

code follows these steps:

- Step 1: A sliding window having the same size as the codeword is moved across

the received window to test every possible time delay.

- Step 2: For every time delay, the content of the window is correlated with every

codeword in the codebook.

- Step 3: The codeword with the highest correlation with the content of the

window is recorded.

83

- Step 4: The time delay with the highest correlation calculated from the previous

step is chosen as the correct time delay.

The PSE is the probability that the chosen time delay is different from the correct

time delay and is expressed by:

 𝑃𝑟(𝑠𝑦𝑛𝑐 𝑒𝑟𝑟𝑜𝑟) = 𝑃𝑟(⋃ 𝑍𝑡0 < 𝑍𝑖

𝑀

𝑖=1,𝑖≠𝑡0

) ≤ ∑ 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖)

𝑀

𝑖=1,𝑖≠𝑡0

 (7.1)

where 𝑍𝑡0 represents the maximum correlation at the correct time delay, 𝑍𝑖 is the

maximum correlation at the ith incorrect time delay, and 𝑀 is the total number of

possible time delays.

The Union Bound is used in equation (7.1) to provide an upper bound to the

exact PSE because the exact expression is difficult to obtain since the different 𝑍𝑖 are not

independent random variables. In order to evaluate this probability, we need to find the

distributions of 𝑍𝑡0 and all the different 𝑍𝑖.

Let 𝑛 be the number of coded bits in the (𝑛, 𝑘) random code and 𝜎2 be the noise

variance that is inversely proportional to the SNR. We can safely assume that 𝑍𝑡0 is a

Gaussian random variable with parameters 𝒩(𝑛, 𝑛𝜎2). This assumption is accurate

because at the correct time delay, the correct transmitted codeword in the random

codebook will achieve the highest correlation with the contents of the observed window

almost all the time. The top histogram representing the samples of 𝑍𝑡0 in figure 7.1

verifies this assumption. Meanwhile, the distribution of 𝑍𝑖 is unknown because it

represents the maximum of correlated Gaussian random variables whose covariance

84

matrix is not full rank. A mathematical model for such a distribution does not exist but

we can find an empirical one. The bottom two histograms in figure 7.1 show this

distribution when the observation window contains a partial and incomplete signal and

when it contains noise samples only. A direct observation of these two histograms

indicate that the distribution of 𝑍𝑖 resembles a Gamma distribution [49] whose

parameters need to determined or at least approximated.

Figure 7.1: Metric distribution at various time delays for a (20,10) random code

Now that we have an idea about the distributions of the maximum correlation at

the correct an incorrect time delays. We can further express the probability that the

85

maximum correlation at ith incorrect time delay is greater than the maximum correlation

at the correct time delay.

 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖) = ∫ 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧)𝑓𝑍𝑡0
(𝑧)𝑑𝑧

∞

−∞

 (7.2)

 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖) = ∫ 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧)𝑓𝑍𝑡0
(𝑧)𝑑𝑧

∞

0

+∫ 𝑓𝑍𝑡0
(𝑧)𝑑𝑧

0

−∞

 (7.3)

where 𝑓𝑍𝑡0
(𝑧) is the pdf of 𝑍𝑡0. Since 𝑍𝑖 is assumed to have a Gamma distribution, the

first integral in (7.3) starts from 0 because a Gamma random variable is always positive.

However, when 𝑧 is negative, we get 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) = 1. The next step is to

approximate the shape 𝛼 and rate 𝛽 for a Gamma distribution whose pdf is expressed by:

 𝑓(𝑥) =
𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 (7.4)

where 𝛤(𝑥) is the Gamma function:

 𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

 (7.5)

In the probability 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧), a Gamma random variable is being

conditioned on a Gaussian random which means we need to find the shape and rate of a

conditional Gamma random variable. To make things simpler, we will approximate 𝑍𝑖

and 𝑍𝑡0 as jointly Gaussian. Based on that approximation, we can find the conditional

mean 𝜇𝑍𝑖|𝑍𝑡0 and variance 𝜎𝑍𝑖|𝑍𝑡0
2 of 𝑍𝑖 conditioned on 𝑍𝑡0 and deduce the shape and

rate of 𝑍𝑖. The next set of equations will demonstrate this procedure:

 𝜇𝑍𝑖|𝑍𝑡0 = 𝜇𝑍𝑖 +
𝜎𝑍𝑖
𝜎𝑍𝑡0

. 𝜌𝑍𝑖,𝑍𝑡0 . (𝑧 − 𝜇𝑍𝑡0) (7.6)

86

 𝜎𝑍𝑖|𝑍𝑡0
2 = (1 − 𝜌𝑍𝑖,𝑍𝑡0

2) . 𝜎𝑍𝑖
2 (7.7)

 𝛽 =
𝜇𝑍𝑖|𝑍𝑡0
𝜎𝑍𝑖|𝑍𝑡0

2
 (7.8)

 𝛼 = 𝛽. 𝜇𝑍𝑖|𝑍𝑡0 (7.9)

where 𝜌𝑍𝑖,𝑍𝑡0 is the correlation coefficient between 𝑍𝑖 and 𝑍𝑡0.

As a precaution for the rare event when 𝜇𝑍𝑖|𝑍𝑡0 is not positive, we will set it to a

very small number close to 0 because 𝛼 and 𝛽 must be strictly positive. Now we can

proceed to express 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) using the Gamma Function 𝛤(𝑥) and the Upper

Incomplete Gamma Function 𝛤(𝑥, 𝑦):

 𝑃(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) =
𝛤(𝛼, 𝛽𝑧)

𝛤(𝛼)
 (7.10)

 𝛤(𝑥, 𝑦) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

𝑦

 (7.11)

The only missing ingredients to evaluate the PSE are 𝜇𝑍𝑖, 𝜎𝑍𝑖
2, and 𝜌𝑍𝑖,𝑍𝑡0 that

are respectively the mean of 𝑍𝑖, the variance of 𝑍𝑖, and the correlation coefficient

between 𝑍𝑖 and 𝑍𝑡0. The next section will demonstrate how they can be found if possible

or approximated.

Approximating the Unknown Parameters

At the ith incorrect time delay, the maximum correlation is 𝑍𝑖 = max (𝑋1, … , 𝑋𝑁)

where 𝑁 = 2𝑘 and 𝑘 is the number of information bits in the (𝑛, 𝑘) random code and 𝑋𝑗

is the correlation between the observed window and the jth codeword in the random

87

codebook. We need to separate between the cases where the observed window contains

noise sample only and the case where a partial signal is observed.

Noise Only Windows

If we are observing a window that contains noise samples and correlate it with

every codeword in the codebook to obtain 𝑋𝑗. We will find that 𝑋𝑗 are correlated and

identically distributed Gaussian random variables with zero mean and variance 𝑛𝜎2. The

correlation coefficient between 𝑋𝑖 and 𝑋𝑗 is:

 𝜌𝑋𝑖,𝑋𝑗 =
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (7.12)

where 𝑐𝑝
(𝑖)

 is the pth symbol in the ith codeword in the random codebook. The proof of

(7.12) is found in Appendix B. All values of 𝜌𝑋𝑖,𝑋𝑗 need to be computed and stored in a

2𝑘 × 2𝑘 matrix of correlation coefficients 𝑹.

Upon careful observation of the contents 𝑹, its seems to have repeating values.

The smaller correlation coefficients are more frequent than the larger ones. Therefore,

one possible approximation to find 𝜇𝑍𝑖 and 𝜎𝑍𝑖
2 is to assume that 𝑋𝑗 are equally

correlated with the same correlation coefficient 𝜌. This coefficient can be found by

taking the average of the absolute value of all non-diagonal entries of 𝑹. A very similar

result can be obtained by the median or the 𝐿2 average instead of the 𝐿1 average. It was

demonstrated in [50] that the mean and variance of the maximum of equally correlated

Gaussian random variables are related to the mean and variance of the maximum of

independent and identically distributed (IID) Gaussian random variables.

88

For the IID case, the mean 𝜇𝑍𝑖,𝑖𝑖𝑑 and variance 𝜎𝑍𝑖,𝑖𝑖𝑑
2 of the maximum are:

 𝜇𝑍𝑖,𝑖𝑖𝑑 = ∫
𝑁

√2𝜋
√𝑛𝜎2𝑡𝑒

−𝑡2

2 (1 − 𝑄(𝑡))𝑁−1𝑑𝑡
∞

−∞

 (7.13)

 𝜎𝑍𝑖,𝑖𝑑𝑑
2 = ∫

𝑁

√2𝜋
√𝑛𝜎2𝑡2𝑒

−𝑡2

2 (1 − 𝑄(𝑡))𝑁−1𝑑𝑡 −
∞

−∞

𝜇𝑍𝑖,𝑖𝑖𝑑
2 (7.14)

where 𝑄(𝑥) is the Q-function defined by:

 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒

−𝑡2

2 𝑑𝑡
∞

𝑥

 (7.15)

From there 𝜇𝑍𝑖 and 𝜎𝑍𝑖
2 are found as in [50]:

 𝜇𝑍𝑖 ≈ √1 − 𝜌𝜇𝑍𝑖,𝑖𝑑𝑑 (7.16)

 𝜎𝑍𝑖
2 ≈ 𝜌 + (1 − 𝜌)𝜎𝑍𝑖,𝑖𝑖𝑑

2 (7.17)

Since there are no common samples between the noise only window and the window at

the correct time delay, the correlation coefficient is easily found by:

 𝜌𝑍𝑖,𝑍𝑡0 = 0 (7.18)

Windows with Partial Signal

If the observed window now contains some samples of the transmitted signal, the

correlations 𝑋𝑗 between the window and every codeword in the codebook are correlated

and differently distributed Gaussian random variables with different means and an equal

variance 𝑛𝜎2. Let us define 𝑛𝑏 to be the number of symbols present in the observed

window and 𝑖𝑐 to be the index of the chosen codeword that was transmitted from within

the random codebook. Let 𝑑 = 𝑛 − 𝑛𝑏 + 1. Then, the mean of 𝑋𝑗 is:

89

 𝜇𝑋𝑗 =

{

∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

, if the beginning of the signal is observed

∑𝑐𝑖
(𝑖𝑐)𝑐𝑖−𝑑+1

(𝑗)

𝑛

𝑖=𝑑

, if the end of the signal is observed

 (7.19)

The correlation between the different 𝑋𝑗 are calculated using the same expression

for the noise only case in (7.12). Meanwhile the correlation coefficient between 𝑍𝑡0 and

𝑋𝑗 is calculated by:

 𝜌𝑍𝑡0 ,𝑋𝑗 =
1

𝑛
𝜇𝑋𝑗 (7.20)

The correlation coefficients in (7.20) will be useful when calculating 𝜌𝑍𝑖,𝑍𝑡0 . The proof

of (7.20) can be found in Appendix B.

In order to estimate 𝜇𝑍𝑖, 𝜎𝑍𝑖
2, and 𝜌𝑍𝑖,𝑍𝑡0for windows with partial signal, it is

necessary to distinguish between cases where the code rate is low and where the code

rate is high. When the code rate is low, 𝑋𝑗 can be treated as independent and differently

distributed Gaussian random variables. When the code rate is high, 𝑋𝑗 are correlated and

differently distributed Gaussian random variables. We will treat any code rate less than

1/5 as low and any code rate greater than 1/5 as high.

Low Code Rate

Since 𝑋𝑗 are weakly correlated and almost independent for low code rates, we

can simply obtain the mean and variance of 𝑍𝑖 by integrating the pdf of 𝑍𝑖. Let 𝑓𝑋𝑗(𝑥)

and 𝐹𝑋𝑗(𝑥) be the respective pdf and CDF of 𝑋𝑗:

90

 𝑓𝑋𝑗(𝑥) =
1

√2𝜋𝑛𝜎2
𝑒
−
(𝑥−𝜇𝑋𝑗)

2

2𝑛𝜎2 (7.21)

 𝐹𝑋𝑗(𝑥) = 1 − 𝑄 (
𝑥 − 𝜇𝑋𝑗

√𝑛𝜎2
) (7.22)

Then for 𝑍𝑖 = max (𝑋1, … , 𝑋𝑁):

 𝑓𝑍𝑖(𝑧) =∑𝑓𝑋𝑗(𝑧) ∏ 𝐹𝑋𝑞(𝑧)

𝑁

𝑞=1,𝑞≠𝑗

𝑁

𝑗=1

 (7.23)

 𝜇𝑍𝑖 = ∫ 𝑧𝑓𝑍𝑖(𝑧)𝑑𝑧
∞

−∞

 (7.24)

 𝜎𝑍𝑖
2 = ∫ 𝑧2𝑓𝑍𝑖(𝑧)𝑑𝑧

∞

−∞

− 𝜇𝑍𝑖
2 (7.25)

In order to find 𝜌𝑍𝑖,𝑍𝑡0 , we propose using a sequential maximization algorithm.

This algorithm treats the maximum of two Gaussian random variables as another

Gaussian random variable and was initially proposed in [51]. This algorithm works in

the following manner and is explained in details in Appendix C:

- Compute the mean and variance of max (𝑋1, 𝑋2).

- Approximate the correlation coefficient 𝜌𝑋3,max(𝑋1,𝑋2).

- Approximate the mean and variance of max(𝑋3,max(𝑋1, 𝑋2)).

- Approximate the correlation coefficient 𝜌𝑋4,max(𝑋1,𝑋2𝑋3,).

- Continue the same procedure until approximating the mean and variance of

max(𝑋𝑁, max(𝑋1, … , 𝑋𝑁−1)).

- Add the random variable 𝑍𝑡0 to the set 𝑋1, … , 𝑋𝑁 and approximate the correlation

coefficient 𝜌max(𝑋1,…,𝑋𝑁),𝑍𝑡0 .

91

High Code Rate

In this case, we will use a pairwise maximization algorithm proposed in [52] to

approximate and the mean and variance of 𝑍𝑖. This algorithm divides the set of random

variables into pairs and treats the maximum of two Gaussian random variables as

another Gaussian random variable. This algorithm works in the following manner:

- Compute the mean and variance of max (𝑋1, 𝑋2),

max (𝑋3, 𝑋4),…, max (𝑋𝑁−1, 𝑋𝑁).

- Approximate the correlation coefficients 𝜌max(𝑋1,𝑋2),max(𝑋3,𝑋4),…,

𝜌max(𝑋𝑁−3,𝑋𝑁−2),max(𝑋𝑁−1,𝑋𝑁).

- Approximate the mean and variance of

max(max(𝑋1, 𝑋2) , max(𝑋3, 𝑋4)) , … ,max(max(𝑋𝑁−3, 𝑋𝑁−2) ,max(𝑋𝑁−1, 𝑋𝑁)).

- Continue the same procedure until approximating the mean and variance of

max(𝑋1, … , 𝑋𝑁).

This algorithm is explained in detail in Appendix D. The correlation coefficient

𝜌𝑍𝑖,𝑍𝑡0 is approximated using the same procedure as for the low code rate.

Simulation

The entire procedure for approximating the PSE using the Union Bound was

implemented and compared with the actual PSE obtained from Monte Carlo simulations

in addition to the approximate PSE where the different parameters were obtained from

Monte Carlo simulations instead of running the algorithms described above. We

92

experimented with different packet sizes and different codes rates and it can be seen in

figure 7.2-7.10 that for relatively high SNRs of interest, the PSE obtained from the

Union Bound is less than 1dB away from the actual PSE.

Figure 7.2: Frame synchronization for a random code (20,10)

93

Figure 7.3: Frame synchronization for a random code (21,7)

Figure 7.4: Frame synchronization for a random code (40,8)

94

Figure 7.5: Frame synchronization for a random code (42,7)

Figure 7.6: Frame synchronization for a random code (24,6)

95

Figure 7.7: Frame synchronization for a random code (10,5)

Figure 7.8: Frame synchronization for a random code (50,5)

96

Figure 7.9: Frame synchronization for a random code (48,6)

Figure 7.10: Frame synchronization for a random code (27,9)

97

CHAPTER VIII

EFFECT OF DIFFERENT PARAMETERS ON PERFORMANCE FOR THE LOW

DATA RATE COMMUNICATION SYSTEM

Finally, we combined all of the synchronization stages to see the effect of

propagating errors on the overall performance of the communication system. The

performance is measured in terms of the probability of packet loss where 10 information

bits are transmitted in these simulations.

Effect of Code Parameters

We experimented with different convolutional codes by changing the desired

code rate and the constraint length each time to find the best possible code to use in this

scenario. Figures 8.1-8.3 show the results of these simulations. For each desired code

rate there is a minimal difference in performance between the different constraint

lengths. This indicates that most of the losses are due to synchronization errors rather

than the error-correction capability of the codes. It can also be seen that the codes with a

desired rate of 1/2 outperform those with a desired rate of 1/3 or 1/4 by a small margin.

This is due to the fact that lowering the code rate reduces the energy per symbol and thus

increasing the chances of not capturing the entire signal in the window during coarse

synchronization. In the end, the (30,10,6) convolutional code that has a desired rate of

1/2, a constraint length of 6, and an effective rate of 1/3 gave the best performance

among these scenarios by a very small margin.

98

Figure 8.1: Probability of packet loss for rate 1/2 convolutional codes in the

presence of synchronization errors (k=10)

Figure 8.2: Probability of packet loss for rate 1/3 convolutional codes in the

presence of synchronization errors (k=10)

99

Figure 8.3: Probability of packet loss for rate 1/4 convolutional codes in the

presence of synchronization errors (k=10)

However, if we repeat the same exercise with perfect synchronization, we will

find that a (42,10,5) convolutional code achieved the best performance in terms of

probability of packet loss. The conclusion is, when it comes to short packets,

synchronization must be taken into account while designing the communication system

and the signal parameters that guarantee the best performance under perfect

synchronization are not necessarily the same under synchronization errors. The results

for perfect synchronization are shown in figures 8.4-8.6.

100

Figure 8.4: Probability of packet loss for rate 1/2 convolutional codes with perfect

synchronization (k=10)

Figure 8.5: Probability of packet loss for rate 1/3 convolutional codes with perfect

synchronization (k=10)

101

Figure 8.6: Probability of packet loss for rate 1/4 convolutional codes with perfect

synchronization (k=10)

Effect of the Smaller Uncertainty Window Size

Next, we wanted to see the effect of the smaller uncertainty window size on the

overall performance so we ran the simulations for different window coefficients while

the initial window coefficient is 𝑀 = 20. Figure 8.7 shows that a window that is twice

the size of the transmitted signal is the best option in this scenario. These results indicate

that when the window is too small, we are less likely to capture the entire signal at the

coarse and symbol synchronization stage. But in case we do, we have a better chance of

performing the phase and frame synchronization correctly as there is less noise in the

window and vice versa for when the window is too large. Therefore, the window needs

to have a moderate size.

102

Figure 8.7: Effect of window size on the probability of packet loss for a (30,10,6)

convolutional code

Effect of Imperfect Synchronization and Propagating Errors

We wanted to investigate the source of the major losses when all synchronization

stages were combined together and whether that is the best possible performance we can

get. We ran a few simulations showing how losses increase with the addition of each

synchronization stage. We start with perfect synchronization where the exact time delay

and phase offset are known, then we implement each synchronization stage one by one

as described previously and combine them to see the losses when synchronization is

imperfect. The results are illustrated in figure 8.8. In these simulations, 𝑀 = 20, 𝑚 = 2,

and the chosen code is a (30,10,6) convolutional code.

103

Figure 8.8: Effect of imperfect synchronization on the probability of packet loss for

a (30,10,6) convolutional code

Table 8.1 summarizes the results of figure 8.8 and shows the losses from perfect

synchronization after the imperfect implementation of each synchronization stage when

using a (30,10,6) convolutional code at a 0.2% probability of packet loss.

104

Table 8.1: Summary of losses due to the imperfect implementation of each

synchronization stage

Imperfect implementation of:

Approximate loss from perfect

synchronization at 0.2% probability of

packet loss (dB)

Phase Synchronization 0.3

Frame Synchronization 0.35

Phase and Frame Synchronization 0.5

Coarse, Symbol, and Frame

Synchronization

1.3

Coarse, Symbol, Phase, and Frame

Synchronization

1.35

From what we can see in figure 8.8 and table 8.1, frame and phase

synchronization have a much smaller impact on the degradation of performance

compared to coarse and symbol synchronization after the implementation of the

proposed frame synchronization algorithm. The frame synchronization algorithm we

developed was proven to reach the best possible performance under soft-decision

decoding. Meanwhile, coarse and symbol synchronization can be problematic as they

precede frame synchronization and their losses will propagate to the next stages. If the

entire signal was not captured during coarse synchronization, the remaining steps will all

have to make decisions based on the wrong input. If the correct sampling time was not

105

chosen during symbol synchronization, the signal that will be forwarded to the frame

synchronizer will be weaker than it should be which will diminish our chances of

decoding the word correctly.

Effect of Pilot Symbols

We investigated the use of pilot symbols and whether they can help us in closing

the gap between the current performance and perfect performance. Adding pilot symbols

require making small changes to the synchronization algorithms previously described. At

the coarse and symbol synchronization stages, the procedure is the same but 𝑆𝑡 is now

defined by:

𝑆𝑡 = ∑ |𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]|

2
𝑛+𝐿−1

𝑖=0

+∑𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]𝑝𝑖

𝐿−1

𝑖=0

 𝑓𝑜𝑟 𝑡

= 0,1, … , (𝑀 − 1)𝐾 − 1

(8.1)

where 𝐿 is the number of pilot bits and 𝑝𝑖 is the ith sample in the pilot sequence. The

phase estimation procedure remains the same and the pilot symbols are incorporated in

the frame synchronization algorithm to resolve the ambiguity.

At the frame synchronization stage, a sliding window 𝑪 of length 𝑛 + 𝐿 slides

across the smaller uncertainty window of size 𝑚(𝑛 + 𝐿) all the way to the last possible

time delay and evaluates a correlation metric for each time delay by following these

steps:

- Step 1: Strip the first 𝐿 bits that are supposed to be the pilot symbols.

- Step 2: De-interleave the remaining 𝑛 bits inside the sliding window in case

interleaving was used.

106

- Step 3: Decode those 𝑛 bits by following the decoding algorithm for the chosen

(𝑛, 𝑘) code.

- Step 4: Re-encode the resulting 𝑘 information bits according to the encoding

algorithm for the (𝑛, 𝑘) code.

- Step 5: Re-interleave the 𝑛 coded bits in case interleaving was used.

- Step 6: Attach the known pilot bits ahead of the newly found 𝑛 coded bits.

- Step 7: Re-modulate the resulting 𝑛 + 𝐿 bits according to the modulation scheme

that was used at the transmitter. This will create a new window 𝑪′.

- Step 8: Calculate the correlation 𝜌𝑗 at the jth time delay between the contents of

𝑪 and the contents of 𝑪′ according to:

 𝜌𝑗 =∑𝐶𝑖

𝑛−1

𝑖=0

𝐶′𝑖 𝑓𝑜𝑟 𝑗 = 0,1, … , (𝑚 − 1)(𝑛 + 𝐿) − 1 (8.2)

- Step 9: Choose the time delay that maximizes the correlation according to:

 𝑡0 = argmax
𝑡=0,…,(𝑚−1)(𝑛+𝑙)−1

𝜌𝑡 (8.3)

We experimented with different numbers of pilot bits attached to the beginning

of the signal and ran the simulations to see the change in performance. Figure 8.9 shows

that pilot symbols did not improve the performance but made it worse. This is because

the cost of adding the extra pilot bits outweighs any gain we can achieve in performance.

In order for a pilot sequence to be effective in synchronization, it needs to be long and

unique that it can be easily detected but also much shorter compared to the information

portion of the signal. Since the packet is very short (10 information bits), the pilot

sequence might end up being as long as the packet itself which causes a significant waste

107

of energy. On the contrary, if the packet was 1000 bits long, a pilot sequence that is 100

bits long can be easily detected and has a negligible size compared to the data. Hence,

we can reliably perform synchronization at a minimum cost of overhead.

Figure 8.9: Effect of pilot symbols on the probability of packet loss for a (30,10,6)

convolutional code

Potential Improvement

Now, we want to know how far are we from the best achievable performance in

this scenario. We tested a coarse and symbol synchronization algorithm that we call “one

step above optimal” in performance. In this algorithm, we assumed that we know exactly

what the transmitted sequence is so at the coarse synchronization stage, we compute a

cross-correlation between the transmitted sequence and the received signal and then

choose the time delay that returned the highest correlation as a rough estimate of the true

108

time delay. Then for each sampling time we computed the cross-correlation of the

transmitted sequence with the samples of the matched filter output and chose the

sampling time that maximizes this correlation.

We ran the simulation for that algorithm and the results are shown in figure 8.10

for the (30,10,6) convolutional code. It can be seen that with a “genie aided” coarse and

symbol synchronization algorithm, there is a 0.5dB loss from perfect synchronization

where the exact time delay and phase offset are known. There is also less than 0.5dB

difference between the current decoder-assisted synchronization and the genie aided

coarse and symbol synchronization. The optimal coarse and symbol synchronizer would

be somewhere in between those two so any improvement we can make will not gain

more than 0.5dB. The optimal coarse and symbol synchronizer will have to compute the

cross-correlation between every possible transmitted codeword and the received signal.

Then, it will pick the time delay and the sampling time with the highest correlation in

both cases.

109

Figure 8.10: Comparison of the decoder-assisted synchronization with the above

optimal synchronization

Application to the Pipe Strings Channel

After we optimized the different parameters of the signal to find best

performance under an AWGN channel, we put the resulting signaling format through the

pipe strings and used the proposed synchronization procedure to see the difference in

performance. As we noted previously, the pipe strings have frequency selective

properties and can cause ISI. So we need to test the effect of different parameters on

performance.

Effect of Measurement Location

As it was indicated previously, when the received signal is measured at the

beginning or the end of the pipe segment, the channel response in figure 2.8 is somewhat

flat. But if the signal was measured in the middle of the pipe segment, the channel

110

response in figure 2.9 is slanted and can offer a significant boost to the signal. We put

that theory to the test and simulated the transmitted signal that was designed to improve

synchronization. The signal, shown in figure 8.11, was recorded at the end and in the

middle of the 10th pipe segment in a total of 100 pipe segments.

Figure 8.11: Transmitted signal in time and frequency domains

The second passband (796-994 Hz) in figure 2.9 was used for transmission in

both cases since it offered the highest channel gain when the signal was recorded in the

middle. The carrier frequency was set to 900Hz near the center of the passband. As

shown in figure 8.12, recording the signal in the middle of the pipe segment offers a

significant improvement and boosts the power of the signal for better synchronization

and detection. The channel gain at the chosen carrier frequency was 2dB which is why it

111

outperforms the AWGN channel. However, the amount of ISI from dispersion and all

the reflections will reduce the gain. For the next simulations, all the measurements will

be performed in the middle of the pipe segments.

Figure 8.12: Effect of the measurement location on the probability of packet loss

for a (30,10,5) convolutional code using decoder-assisted synchronization

Effect of the Bit Rate

The different reflections coming from the joints at the beginning and end of the

pipe strings can cause ISI when they arrive at the measurement location before the end

of the original copy of the signal. This distortion can be limited by simply increasing the

bit rate. Increasing the bit rate makes the signal shorter in the time domain. Since the

arrival time of the reflections depends only on the measurement location and the speed

of propagation, reducing the bit rate will delay the reflections relative to the end of the

112

original copy of the signal and consequently reducing the amount of ISI in the channel.

However, increasing the bit rate also increases the bandwidth and risks a portion of the

signal bandwidth falling in a stopband leading to more losses. Hence, the bit rate needs

to be carefully increased such that most of the signal still falls inside the desired

passband.

We tested this theory with three different bit rates of 10, 40, and 50 bits/sec. The

resulting bandwidth was about 40Hz, 140Hz and 175Hz for the 10, 40, and 50 bits/sec

cases respectively. For all cases, the bandwidth was defined as the limiting frequency of

the signal at 40dB down from its peak at the center frequency. The results of the

simulation are shown in figure 8.13 indicating an improvement for the bit rate increase.

For the rest of the simulations, 40 bits/sec was used in all cases since 50 bits/sec did not

offer any significant advantage from the 40 bits/sec case.

Figure 8.13: Effect of the bit rate on the probability of packet loss for a (30,10,5)

convolutional code using decoder-assisted synchronization

113

Effect of the Number of Pipe Segments

Another parameter that affects the amount of ISI in the received signal is the

number of pipe segments in the testbed. When more pipe segments are present, the

stronger reflections coming from the end of the pipe strings have to travel longer

distances before they get recorded at the receiver. This will also delay the reflections

with respect to the original copy of the signal and hence reduce ISI. Increasing the

number of pipe segments will also cause more reflections from the joints but those are

significantly weaker and will not affect the performance as much. We ran the simulation

for 50, 100, and 200 pipe segments where the signal, was recorded in the middle of the

10th pipe segment. The results are shown in figure 8.14 and indicate a major

improvement when more pipe segments are present and thus verifying our prediction.

Figure 8.14: Effect of the number of pipes on the probability of packet loss for a

(30,10,5) convolutional code using decoder-assisted synchronization

114

Effect of Propagation Distance

Finally, we tested the effect of the propagation distance on performance to see

how much the signal can travel down the pipe strings before performance is significantly

degraded. We ran the simulation for 100 pipe segments and the signal was recorded in

the middle of the 10th, 20th, 30th, 40th, and 50th pipe segment. The results of figure 8.15

show a significant degradation in performance beyond the 20th pipe segments. This

degradation is caused by both the exponential decay of the signal amplitude as it travels

for longer distances and the proximity of the measurement location to the end of the pipe

strings causing the reflections to arrive sooner and creating more ISI.

Figure 8.15: Effect of distance on the probability of packet loss for a (30,10,5)

convolutional code using decoder-assisted synchronization

115

In a more realistic scenario, the field testing done in [45] showed that the used

transmitter created a 1V signal while the noise at the receiving equipment was 1mV. The

resulting SNR in this configuration is 60dB calculated by:

 𝑆𝑁𝑅 = 20 log10
1

1 × 10−3
= 60𝑑𝐵 (8.4)

We would like to see how much strength the signal loses are a function of

distance so we ran the experiment for a distance between 1 and 6km. Since each pipe

segment and joint are 10m long, this means that the signal needs to travel for between

100 and 600 pipe segments. Table 8.2 shows how much strength the signal loses as a

function of distance.

Table 8.2: Signal strength as a function of distance

Travelled

Distance

(km)

1 2 3 4 5 6

Signal

Strength

Decay (dB)

2 10 17 25 30 37

As we can see from table 8.3 and at a distance of 6km, the signal is still at 23dB

above the noise level from its initial 60dB and the probability of packet loss at that

distance was less than 0.0004%.

116

CHAPTER IX

CONCLUSIONS

Summary

In this dissertation, we attempted to design two modes of communication to

overcome the challenges imposed by the acoustic vibration of pipe strings for a sensor-

based monitoring and measurements of a given parameter. The first mode requires high

data rate transmission of either an image or a video in cases of emergency. The second

mode requires low data rate transmission of periodic sensor readings consisting of a very

short packet of bits. We first described the channel response and studied the behavior of

passbands and stopbands in its frequency response. For the high data rate

communication system, we designed an OFDM based system whose bandwidth spans

multiple passbands and used error-correction coding to recover the lost information. For

the low data rate communication system, we designed an appropriate signaling format

and focused on the synchronization problem for very short packets and came up with the

appropriate synchronization procedure to improve performance.

Main Findings

Channel Characterization

The pipe strings used for transmission of information have a unique frequency

response characterized by the presence of several passbands and stopbands that exhibit

the following behaviors:

117

- The passbands get narrower for higher frequencies while the stopbands get

wider.

- The passbands get weaker as a function of both increasing frequency and

propagation distance.

- The stopbands get deeper as a function of both increasing frequency and

propagation distance.

- The passband strength is dependent on the measurement location within each

pipe string.

- The passbands exhibit several fluctuations that decay as function of increasing

frequency and propagation distance.

This channel also causes a phase offset to the signal and adds Inter-Symbol-

Interference to the desired wave due to the accumulation of different reflections coming

from both edges of the pipe strings and from the multiple joints along the way.

High Data Rate Communication System

For the high data rate communication system, the data rate offered by the

passbands was not able to accommodate the transmission of video but was able to

accommodate colored images within the given time constraints.

The proposed OFDM system was able to achieve desirable levels of performance

if the different parameters were tuned appropriately to guarantee better energy

efficiency. The main conclusions are summarized below:

- Smaller frequency spacing for the OFDM subcarriers offered a better

performance since it avoids the fluctuations in the passband by making the

118

channel response for each subcarrier almost flat. The frequency spacing cannot

be more than 2Hz.

- A moderate length cyclic prefix can balance between the extra overhead cost and

the elimination of ISI for the SNR region of interest. The cyclic prefix should not

be less than 50% of each OFDM symbol. Longer cyclic prefix will give an

overall worse performance as the cost of overhead begins to outweigh the benefit

in limiting ISI.

- Increasing the signal bandwidth and including more passbands will result in a

poorer performance.

- The use of the first 3 passbands for transmission offered the best performance in

terms of achievable depth. The signal for the 16 colors image was able to travel

slightly more than 6km while the signal for the 256 colors image was able to

travel slightly more than 5km.

Low Data Rate Communication System

For the low data rate single carrier communication system, we examined the

problem of synchronization for very short packets and studied the effects of

synchronization errors on the probability of packet loss. We also proposed a simple and

straight forward frame synchronization algorithm for short packet communication that

exploits the presence of error-correction codes to perform the synchronization. Finally,

we combined all synchronization stages and observed the loss in performance incurred

by imperfect coarse, symbol, phase, and frame synchronization. The main conclusions of

this section are summarized below:

119

- The size of the uncertainty window has to be reasonably small for reliable

synchronization of very short signals. We proposed scheduled transmissions to

help us achieve better synchronization.

- The pulse shape affects synchronization and must be chosen to maximize the

performance. We laid out the criteria that need to be satisfied by the pulse shape

to improve performance and chose the pulse shape that satisfied all of them.

- The choice of error-correction code affects frame synchronization on short

packets and convolutional codes seem to offer the best performance for very

short packets.

- The code parameters affect the performance and there needs to be a balance

between the error-correction capability and the energy allocation per bit.

- The size of the smaller uncertainty window needs to be optimized to balance

between coarse synchronization and the other synchronization stages.

- Coarse and symbol synchronization cause more losses to the overall

performance.

- The cost of adding pilot symbols outweighs any gain in performance.

- The achieved performance is very close to the best possible performance given

the very short nature of the transmitted packet.

- Recording the signal in the middle of the pipe strings instead of the beginning or

end boosts the power of the received signal by benefiting from the channel gain.

120

- Increasing the bit rate helps reducing ISI by delaying the reflections with respect

to the tail of the received signal. The bit rate increase must keep in mind the

limits of the chosen passband.

- The addition of more pipe strings to the system improves performance by

delaying the reflections and reducing the amount of ISI.

- The system performance rapidly degrades as a function of the propagating

distance due to the loss in the signal’s amplitude and the amplification of ISI as

the signal gets closer to the end.

- The proposed signal was able to travel more than 6km while maintaining a

probability of packet loss above the performance threshold.

121

REFERENCES

[1] M. Alard and R. Lassalle, “Principles of modulation and channel coding for digital

broadcasting for mobile receivers,” EBU Technical Review, no. 224, pp.186-191,

August 1987.

[2] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms,

Wiley, 2005.

[3] D. S. Yoo, W. E. Stark, K. P. Yar, and S. J. Oh, “Coding and Modulation for Short

Packet Transmission,” IEEE Transactions on Vehicular Technology, vol. 59, no.

4, pp. 2104-2109, January 2010.

[4] C. Berger, S. Zhou, Y. Wen, P. Willett, and K. Pattipati, “Optimizing Joint Erasure

and Error Correction Coding for Wireless Packet Transmissions,” IEEE

Transactions on Wireless Communications, vol. 7, no. 11, pp. 4586-4595,

December 2008.

[5] G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, and W. Yang, “Short-Packet

Communications over Multiple-Antenna Rayleigh-Fading Channels,” IEEE

Transactions on Communications, vol. 64, no. 2, pp. 618–629, February 2016.

[6] G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, and W. Yang, “Short-Packet

Communications with Multiple Antennas: Transmit Diversity, Spatial

Multiplexing, and Channel Estimation Overhead,” 2014 IEEE International

Symposium on Wireless Communication Systems, December 2014.

122

[7] G. Durisi, T. Koch, P. Popovski, “Towards Massive, Ultra-Reliable, and Low-

Latency Wireless Communication with Short Packets,” Proceedings of the IEEE,

vol. 104, no. 9, pp. 1711-1726, August 2016.

[8] D. Slepian, “Bounds on Communication,” The Bell System Technical Journal, vol.

42, no. 3, pp. 681-707, May 1963.

[9] C. E. Shannon, “Probability of Error for Optimal Codes in a Gaussian Channel,” The

Bell System Technical Journal, vol. 38, no. 3, May 1959.

[10] S. Dolinar, D. Divsalar, and F. Pollara, “Code Performance as a Function of Block

Size,” TMO Progress Report 42-133, May 1998.

[11] Y. Huang, U. Nieren, and P. Gupta, “Energy-Efficient Communication in the

Presence of Synchronization Errors,” 2013 IEEE International Symposium on

Information Theory, July 2013.

[12] J. K. Wolf and A. J. Viterbi, “On the Weight Distribution of Linear Block Codes

Formed from Convolutional Codes,” IEEE Transactions on Communications,

vol. 44, no. 9, pp. 1049-1051, September 1996.

[13] J. Stiffler, “Comma-Free Error-Correcting Codes,” IEEE Transactions on

Information Theory, vol. 11, no. 1, pp. 107-112, January 1965.

[14] W. Eastman, “On the Construction of Comma-Free Codes,” IEEE Transactions on

Information Theory, vol. 11, no. 2, pp. 263-267, April 1965.

[15] Y. Fujiwara and V. D. Tonchev, “High-rate self-synchronizing codes,” IEEE

Transactions on Information Theory, vol. 59, no. 4, pp. 2328-2335, December

2012.

123

[16] F. Gardner, “A BPSK/QPSK Timing-Error Detector for Sampled Receivers,” IEEE

Transactions on Communications, vol. COM-34, no. 5, pp. 423-429, 1986.

[17] Bernard Sklar, Digital Communications: Fundamentals and Applications, Prentice-

Hal, 1988.

[18] K. Mueller and M. Muller, "Timing Recovery in Digital Synchronous Data

Receivers," IEEE Transactions on Communications, vol. COM-24, pp. 516-531,

May 1976.

[19] J. Bhatti and M. Moeneclaey, “Iterative soft-decision-directed phase noise

estimation from a DCT basis expansion,” IEEE 20th International Symposium on

Personal, Indoor and Mobile Radio Communications, September 2009.

[20] F. Simoens, D. Duyck, H. Çırpan, E. Panayirci, and M. Moeneclaey, “Monte Carlo

Solutions for Blind Phase Noise Estimation,” EURASIP Journal on Wireless

Communications and Networking, 2009.

[21] Y. Rahamim, A. Freedman, and A. Richman, “Methods for Carrier Synchronization

of Short Packet Turbo Coded Signals,” 2004 IEEE 15th International Symposium

on Personal, Indoor and Mobile Radio Communications, September 2004.

[22] H. Wymeersch, H. Steendam, H. Bruneel, and M. Moeneclaey, “Code-Aided Frame

Synchronization and Phase Ambiguity Resolution,” IEEE Transactions on Signal

Processing, vol. 54, no. 7, July 2006.

[23] J. L. Massey, “Optimum frame synchronization,” IEEE Transactions on

Communications, vol. 20, no. 4, pp. 115–119, April 1972.

124

[24] P. Robertson, “A generalized frame synchronizer,” Proceedings of GLOBECOM,

December 1992, pp. 365–369.

[25] P. Robertson, “Optimum frame synchronization of packets surrounded by noise

with coherent and differentially coherent demodulation,” Proceedings of

International Conference on Communications, pp. 874–879, May 1994.

[26] B. H. Moon and S. S. Soliman, “ML frame synchronization for the Gaussian

channel with ISI,” Proceedings of IEEE International Conference on

Communications, Denver, CO, June 1991, pp. 1698–1702.

[27] P. Robertson, “Maximum likelihood frame synchronization for flat fading

channels,” Proceedings of International Conference on Communications, pp.

1426–1430, IEEE, 1992.

[28] G. L. Lui and H. H. Tan, “Frame synchronization for Gaussian channels,” IEEE

Transactions on Communications, vol. 35, no. 8, pp. 818–829, August 1987.

[29] P. Robertson, “Improving frame synchronization when using convolutional codes,”

Proceedings of IEEE GLOBECOM, pp 1606-1611, Houston, 1993.

[30] H. Huh and J. Krogmeier, “A unified approach to optimum frame synchronization,”

IEEE Transactions on Wireless Communications, vol. 5, pp. 3700–3711,

December 2006.

[31] T. M. Cassaro and C. N. Georghiades, “Frame synchronization for coded systems

over AWGN channels,” IEEE Transactions on Communications, vol. 32, pp.

484–489, March 2004.

125

[32] M.K. Howlader and B.D. Woerner, “Decoder-assisted frame synchronization for

packet transmission,” IEEE Journal on Selected Areas in Communications, vol.

19, no. 12, pp. 2331-2345, December 2001.

[32] S. Houcke and G. Sicot, “Blind frame synchronization for block code,” Proceedings

of EUSIPCO, European Signal Processing, September 2006.

[33] Z. Jing, H. Zhiping, S. Shaojing, Y. Shaowu, “Blind recognition of binary cyclic

codes,” EURASIP Journal on Wireless Communications and Networking,

December 2013.

[34] C. Herzet, K. Woradit, H. Wymeersch, and L. Vandendorpe, “Code-aided

maximum-likelihood ambiguity resolution through free-energy minimization,”

IEEE Transactions on Signal Processing, vol. 58, pp. 6238–6250, December

2010.

[35] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp.

498–519, February 2001.

[36] H. Wymeersch and M. Moeneclaey, “ML frame synchronization for turbo and

LDPC codes,” International Symposium on Turbo Codes & Related Topics,

ISTC’, Brest, France, September 2003.

[37] J. Sun and M. Valenti, “Optimum Frame Synchronization for Preamble-less Packet

Transmission of Turbo Codes,” Conference Record of the Thirty-Eighth

Asilomar Conference on Signals, Systems and Computers, November 2004.

126

[38] D. Jakubisin, C. I. Phelps, and R. M. Buehrer, “Iterative Joint Detection, Decoding,

and Synchronization with a Focus on Frame Timing,” 2014 IEEE Wireless

Communications and Networking Conference (WCNC), November 2014.

[39] H. Wymeersch, H. Steendam, H. Bruneel, and M. Moeneclaey, “Code-aided frame

synchronization and phase ambiguity resolution,” IEEE Transactions on Signal

Processing, vol. 54, pp. 2747–2757, July 2006.

[40] C. Herzet, H. Wymeersch, F. Simoens, M. Moeneclaey, and L. Vandendorpe,

“MAP-based code-aided hypothesis testing,” IEEE Transactions on Wireless

Communication, vol. 7, no. 8, pp. 2856–2860, August 2008.

[41] R. Imad, G. Sicot, and S. Houcke, “Blind frame synchronization for error correcting

codes having a sparse parity check matrix,” IEEE Transactions on

Communication, vol. 57, no. 6, pp. 1574–1577, June 2009.

[43] R. Imad and S. Houcke, “Theoretical analysis of a MAP based blind frame

synchronizer,” IEEE Transactions on Wireless Communication, vol. 8, no. 11,

pp. 5472–5476, November 2009.

[44] D. S. Drumheller, “Acoustical Properties of Drill Strings,” The Journal of the

Acoustical Society of America, vol. 85, pp. 1048–1064, March 1989.

[45] A. Redissi and S. Miller, “Experimental characterization of the propagation of

guided acoustic waves in pipe strings”, The Journal of the Acoustical Society of

America, vol. 143, pp. 1385-1391, March 2018.

[46] J. Proakis, Digital Communications, McGraw-Hill, 1995, p. 21.

127

[47] X. Yu Hu, E. Eleftheriou, and D. Arbikd, “Regular and irregular progressive edge-

growth tanner graphs,” IEEE Transactions on Information Theory, vol. 51, no. 1,

pp. 386-398, January 2005.

[48] A. Viterbi, “A personal history of the Viterbi algorithm,” IEEE Signal Processing

Magazine, vol. 23, no. 4, pp. 120-142, July 2006.

[49] G. Casella and R. Berger, Statistical Inference, Second Edition, Pacific Grove, CA:

Wadsworth, 2002, p. 99.

[50] D. B. Owen and G. P. Steck, “Moments of Order Statistics from the Equicorrelated

Multivariate Normal Distribution,” The Annals of Mathematica Statistics, vol.

33, pp. 1286-1291, 1962.

[51] C. E. Clark, “The greatest of a finite set of random variables,” Operations

Research, vol. 9, no. 2, pp. 145-162, March/April 1960.

[52] D. Sinha, H. Zhou, and N. V. Shenoy, “Advances in Computation of the Maximum

of a Set of Gaussian Random Variables,” IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems, vol. 26, no. 8, August 2007.

128

APPENDIX A

We will prove equations (5.8) and (5.9). We will split the proof in two parts. The

first part will be for the noise only case and the second part will be for the presence of a

signal.

Noise Only Case

Let 𝑍𝑘 = 𝑋𝑘 + 𝑗𝑌𝑘 where 𝑗 = √−1, 𝑍𝑘~𝒩(0, 𝜎
2), and 𝑋𝑘, 𝑌𝑘~𝒩(0,

𝜎2

2
) are

respectively the real and imaginary parts of 𝑍𝑘.

 |𝑍𝑘|
2 = 𝑋𝑘

2 + 𝑌𝑘
2 (A.1)

Define 𝑍′𝑘 such that:

 |𝑍′𝑘|
2 =

2

𝜎2
(𝑋𝑘

2 + 𝑌𝑘
2) (A.2)

Then |𝑍′𝑘|
2~𝜒2

2 is a Chi-Squared random variable with 2 degrees of freedom. Hence for

the mean:

 𝐸[|𝑍′𝑘|
2] =

2

𝜎2
(𝐸[𝑋𝑘

2] + 𝐸[𝑌𝑘
2]) = 2 (A.3)

2

𝜎2
𝐸[|𝑍𝑘|

2] = 2 (A.4)

 𝐸[|𝑍𝑘|
2] = 𝜎2 (A.5)

Similarly, for the variance:

 𝑉𝑎𝑟(|𝑍′𝑘|
2) =

4

𝜎4
(𝑉𝑎𝑟(𝑋𝑘

2) + 𝑉𝑎𝑟(𝑌𝑘
2)) = 4 (A.6)

4

𝜎4
𝑉𝑎𝑟(|𝑍𝑘|

2) = 4 (A.7)

129

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝜎4 (A.8)

Signal Present Case

Let 𝑍𝑘 = ±1 + 𝑋𝑘 + 𝑗𝑌𝑘 where 𝑗 = √−1, 𝑍𝑘~𝒩(±1, 𝜎
2), and 𝑋𝑘 , 𝑌𝑘~𝒩(0,

𝜎2

2
).

 |𝑍𝑘|
2 = 𝑋𝑘

2 ± 2𝑋𝑘 + 𝐸𝑏 + 𝑌𝑘
2 (A.9)

The mean is found by:

 𝐸[|𝑍𝑘|
2] = 𝐸[𝑋𝑘

2] ± 2𝐸[𝑋𝑘] + 1 + 𝐸[𝑌𝑘
2] (A.10)

 𝐸[|𝑍𝑘|
2] = 2𝐸[𝑋𝑘

2] + 1 = 𝜎2 + 1 (A.11)

The variance is found by:

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝑉𝑎𝑟(𝑋𝑘

2 ± 2𝑋𝑘 + 1 + 𝑌𝑘
2) (A.12)

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝑉𝑎𝑟(𝑋𝑘

2 + 𝑌𝑘
2) + 4𝑉𝑎𝑟(𝑋𝑘) + 4𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘

2 + 𝑌𝑘
2) (A.13)

 𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘
2 + 𝑌𝑘

2) = 𝐸[(𝑋𝑘 − 𝐸[𝑋𝑘])(𝑋𝑘
2 + 𝑌𝑘

2 − 2𝐸[𝑋𝑘
2])] (A.14)

 𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘
2 + 𝑌𝑘

2) = 𝐸[𝑋𝑘
3 + 𝑋𝑘𝑌𝑘

2 − 𝜎2𝑋𝑘] = 0 (A.15)

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 2𝑉𝑎𝑟(𝑋𝑘

2) + 4𝑉𝑎𝑟(𝑋𝑘) = 𝜎
4 + 2𝜎2 (A.16)

Equation (A.15) is justified by the fact that 𝑋𝑘 and 𝑌𝑘 are Gaussian and

uncorrelated hence 𝑋𝑘 and 𝑌𝑘
2 are also uncorrelated. In addition, since 𝑋𝑘 has zero

mean, any odd moment of 𝑋𝑘 is zero. Equation (A.16) is justified by the fact that
2𝑋𝑘

2

𝜎2
 is

Chi-Squared with 1 degree of freedom and hence:

130

 𝑉𝑎𝑟 (
2𝑋𝑘

2

𝜎2
) =

4

𝜎4
𝑉𝑎𝑟(𝑋𝑘

2) = 2 (A.17)

 𝑉𝑎𝑟(𝑋𝑘
2) =

𝜎4

2
 (A.18)

131

APPENDIX B

We will prove equations (7.12) for both noise only windows and windows with

partial signal.

Noise Only Case

We start with:

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

 (B.1)

This means that 𝑋𝑗~𝒩(0, 𝑛𝜎
2). We calculate the covariance between 𝑋𝑖 and 𝑋𝑗:

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸[𝑋𝑖𝑋𝑗] − 𝐸[𝑋𝑖]𝐸[𝑋𝑖] = 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

.∑ 𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] − 0 (B.2)

Since the noise samples are independent from each other:

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸 [∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)
𝑤𝑝

2

𝑛

𝑝=1

] = 𝜎2∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)

𝑛

𝑝=1

 (B.2)

 𝜌𝑋𝑖,𝑋𝑗 =
𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2∑ 𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)𝑛

𝑝=1

𝑛𝜎2
=
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.3)

132

Windows with Partial Signal

Let 𝒓 be the vector of received samples expressed by:

 𝒓 = [0,… ,0, 𝑐1
(𝑖𝑐), … , 𝑐𝑛𝑏

(𝑖𝑐)] + [𝑤1, … , 𝑤𝑛] (B.4)

Then 𝑋𝑗 is expressed by:

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)

𝑛𝑏

𝑖=1

=∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗 (B.5)

which makes 𝑋𝑗~𝒩(𝜇𝑋𝑗 , 𝑛𝜎
2). The correlation between 𝑋𝑖 and 𝑋𝑗 is calculated by:

 𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [(∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑖) .(∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

+ 𝜇𝑋𝑗)] (B.6)

𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

.∑ 𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] + 𝜇𝑋𝑗𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

]

+ 𝜇𝑋𝑖𝐸 [∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] + 𝜇𝑋𝑖𝜇𝑋𝑗

(B.7)

We know that:

 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

] = 𝐸 [∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] = 0 (B.8)

We can simplify the correlation to:

 𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)
𝑤𝑝

2

𝑛

𝑝=1

] + 𝜇𝑋𝑖𝜇𝑋𝑗 = 𝜎
2∑𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)

𝑛

𝑝=1

+ 𝜇𝑋𝑖𝜇𝑋𝑗 (B.9)

133

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸[𝑋𝑖𝑋𝑗] − 𝐸[𝑋𝑖]𝐸[𝑋𝑖]

= 𝜎2∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)

𝑛

𝑝=1

+ 𝜇𝑋𝑖𝜇𝑋𝑗 − 𝜇𝑋𝑖𝜇𝑋𝑗
(B.10)

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝜎
2∑𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.11)

 𝜌𝑋𝑖,𝑋𝑗 =
𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2∑ 𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)𝑛

𝑝=1

𝑛𝜎2
=
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.12)

The same procedure can be repeated if:

 𝒓 = [𝑐𝑑
(𝑖𝑐), … , 𝑐𝑛

(𝑖𝑐), 0, … ,0] + [𝑤1, … , 𝑤𝑛] (B.13)

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+∑𝑐𝑖
(𝑖𝑐)𝑐𝑖−𝑑+1

(𝑗)

𝑛

𝑖=𝑑

=∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗 (B.14)

We will now prove equation (7.20). We start with the maximum correlation at

the correct time 𝑍𝑡0~𝒩(𝑛, 𝑛𝜎
2) and assume that 𝒓 is described by (B.4) and 𝑋𝑗

described by (B.5):

 𝑍𝑡0 =∑(𝑐𝑖
(𝑖𝑐) + 𝑤𝑑+𝑖−1)

𝑛

𝑖=1

𝑐𝑖
(𝑖𝑐) = 𝑛 +∑𝑐𝑖

(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

 (B.15)

The correlation between 𝑍𝑡0 and 𝑋𝑗 is calculated by:

 𝐸[𝑍𝑡0𝑋𝑗] = 𝐸 [(𝑛 +∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

) . (∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗)] (B.16)

134

𝐸[𝑍𝑡0𝑋𝑗] = 𝑛𝐸 [∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

] + 𝑛𝜇𝑋𝑗 + 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

.∑ 𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

]

+ 𝜇𝑋𝑗𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

]

(B.17)

We know that:

 𝐸 [∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

] = 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑖

𝑛

𝑖=1

] = 0 (B.18)

We can simplify the correlation to:

 𝐸[𝑍𝑡0𝑋𝑗] = 𝑛𝜇𝑋𝑗 + 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)
𝑤𝑖

2

𝑛𝑏

𝑖=1

] = 𝑛𝜇𝑋𝑗 + 𝜎
2∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

 (B.19)

𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗) = 𝐸[𝑍𝑡0𝑋𝑗] − 𝐸[𝑍𝑡0]𝐸[𝑋𝑗]

= 𝑛𝜇𝑋𝑗 + 𝜎
2∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

− 𝑛𝜇𝑋𝑗

(B.20)

 𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗) = 𝜎2∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)

𝑛𝑏

𝑖=1

= 𝜎2𝜇𝑋𝑗 (B.21)

 𝜌𝑍𝑡0 ,𝑋𝑗 =
𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2𝜇𝑋𝑗
𝑛𝜎2

=
1

𝑛
𝜇𝑋𝑗 (B.22)

The same procedure can be repeated if 𝒓 is described by (B.13) and 𝑋𝑗 is described by

(B.14).

135

APPENDIX C

SEQUENTIAL MAXIMIZATION ALGORITHM

Let 𝑋1, … , 𝑋5 be Gaussian random variables that are correlated and differently

distributed. Let us define two boxes where one is the maximization box and the other is

the correlation box that are illustrated in figure 9.1.

Figure 9.1: Illustration of the Maximization Box and the Correlation Box

Inside the maximization box, the following operations happen as indicated in

[51]:

 𝑎 = √|𝑉𝑎𝑟(𝑋1) + 𝑉𝑎𝑟(𝑋2) − 2𝜌(𝑋1, 𝑋2)√𝑉𝑎𝑟(𝑋1)𝑉𝑎𝑟(𝑋2)| (C.1)

 𝛼 =
𝐸[𝑋1] − 𝐸[𝑋2]

𝑎
 (C.2)

136

 𝐸[max(𝑋1, 𝑋2)] = 𝐸[𝑋1].Ф(𝛼) + 𝐸[𝑋2]. Ф(−𝛼) + 𝑎.ɸ(𝛼) (C.3)

𝑉𝑎𝑟(max(𝑋1, 𝑋2))

= (𝑉𝑎𝑟(𝑋1). (𝐸[𝑋1])
2).Ф(𝛼)

+ (𝑉𝑎𝑟(𝑋2). (𝐸[𝑋2])
2).Ф(−𝛼)

+ (𝐸[𝑋1] + 𝐸[𝑋2]). 𝑎. ɸ(𝛼) − (𝐸[max(𝑋1, 𝑋2)])
2

(C.4)

Inside the correlation box, the following operation happens:

𝜌(𝑋3,max(𝑋1, 𝑋2))

=
√𝑉𝑎𝑟(𝑋1). 𝜌(𝑋1, 𝑋3).Ф(𝛼) + √𝑉𝑎𝑟(𝑋2). 𝜌(𝑋2, 𝑋3).Ф(−𝛼)

√𝑉𝑎𝑟(max(𝑋1, 𝑋2))

(C.5)

where Ф(𝑥) and ɸ(𝑥) are the standard normal CDF and pdf respectively.

The algorithm will approximate the mean and variance of max (𝑋1, … , 𝑋5) in

steps 1-4 as illustrated in figures 9.2-9.5.

Figure 9.2: Illustration of Step 1

137

Figure 9.3: Illustration of Step 2

Figure 9.4: Illustration of Step 3

138

Figure 9.5: Illustration of Step 4

The algorithm can be extended to 𝑁 random variables but it must be noted that

the more random variables are added the more approximation errors will be

compounded.

139

APPENDIX D

PAIRWISE MAXIMIZATION ALGORITHM

Let 𝑋1, … , 𝑋8 be Gaussian random variables that are correlated and differently

distributed. The same maximization and correlation boxes from Appendix C are used.

Let us also introduce the pair correlation box as shown in figure 9.6 and whose contents

are illustrated of figure 9.7.

Figure 9.6: Illustration of the Pair Correlation Box

140

Figure 9.7: Contents of the Pair Correlation Box

The algorithm will approximate the mean and variance of max(𝑋1, … , 𝑋8) in

steps 1-3 as illustrated in figures 9.8-9.11.

Figure 9.8: Illustration of Step 1

141

Figure 9.9: Illustration of Step 2

Figure 9.10: Illustration of Steps 3a-3d

142

Figure 9.11: Illustration of Steps 3e-3h

The algorithm can be extended to 𝑁 random variables where 𝑁 must be a power

of 2, but it must be noted that the more random variables are added the more

approximation errors will be compounded.

