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ABSTRACT 

 

The goal of this dissertation is to design a reliable and efficient communication 

system for downhole acoustic communication. This system is expected to operate in two 

different modes. A broadband high data rate mode in case of transmission of an image or 

a video file and a narrowband low data rate mode in case of transmission of sensor 

readings. This communication system functions by acoustic vibration of the pipes and 

uses them as the channel instead of installing long cables in areas that are hard to reach. 

However, this channel has unique characteristics where it exhibits several passbands and 

stopbands across the frequency spectrum.  The communication system is expected to get 

around those challenges in both modes of operation. In the broadband case, the system 

uses Orthogonal Frequency Division Multiplexing to transmit data across multiple 

orthogonal frequencies spanning multiple passbands combined with an error-correction 

code to recover some of the losses caused by the channel. In the narrowband case, a 

short packet is transmitted at a low data rate where the signal spectrum can fit inside one 

passband. However, transmitting short packets induces a new synchronization problem. 

This dissertation investigates and explores in detail the problem of synchronization on 

short packets where each synchronization stage is examined. A simple algorithm that 

exploits the presence of error-correction codes is proposed for the frame synchronization 

stage and demonstrated to approach the optimal solution. Then, all synchronization 

stages are combined in order to study the effect of propagated errors caused by imperfect 

synchronization from one stage to the next and what can be done in the design of the 
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packet and the receiver structure to mitigate those losses. The resulting synchronization 

procedure is applied to the pipe strings and demonstrated to achieve desirable levels of 

performance with the assistance of equalization at the receiver. 
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CHAPTER I  

INTRODUCTION  

 

Motivation and Background 

Downhole acoustic telemetry is a process in which acoustic waves are used as 

means to carry information and measurements taken at inaccessible or remote areas such 

as wells. The process of telemetry in general is used in multiple fields and industries 

such as oil and gas, medicine, agriculture, water management, energy monitoring, 

transportation, mining, retail, and so on. When it comes to the oil and gas industry in 

particular, acoustic telemetry is extremely beneficial in three ways. First, it allows for 

the measurement of important parameters such as depth, pressure, temperature, flow, 

porosity, and viscosity. Obtaining these measurements is crucial in determining how 

much oil and natural gas can be extracted from a well. Acoustic telemetry offers access 

to the well by extracting all of this information from an area that is generally 

inaccessible or potentially hazardous for humans. Second, it allows for around the clock 

monitoring and inspection of pipes of equipment. For example, acoustic waves can be 

used to check for leaks and corrosion in a pipe by vibrating the pipe and observing the 

resulting modes. Third, acoustic telemetry offers a cheap and reliable alternative to long, 

expensive, and high maintenance cables that would have to be installed in these remote 
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areas. Instead, the acoustic wave will be carrying the information needed while the pipes 

act as a wireless channel. 

At this point, there needs to be a reliable and energy efficient communication 

system that carries the required information from a sensor placed at the bottom of the 

well to the technicians and engineers at the surface so they can analyze the data and 

make decisions. The type of information that needs to be transmitted can be either a 

sensor measurement or a captured image or video. Each one requires a different 

communication system because of the channel characteristics and the different metrics 

for evaluating energy efficiency. The sensor reading consists of a real number converted 

into a short sequence of bits while the image or the video are converted into a much 

longer sequence of bits. The sensor readings can be transmitted using a low data rate 

single carrier system while the image or video is better suited for a high data rate system 

with a wide bandwidth such as Orthogonal Frequency Division Multiplexing (OFDM) 

[1]. As for energy efficiency, the metric is the word error rate for short packets and bit 

error rate for long packets. The reasoning behind using two different metrics is explained 

as follows. When a sensor reading is converted into a bit sequence, a single error in this 

sequence will result in an entirely different number. Hence, the entire packet must be 

transmitted and received correctly. However, when an image is converted into a much 

longer bit sequence, an error in a few bits will not result in an entirely different image. 

Each of the proposed communication systems has a unique challenge. For the low data 

rate case, synchronization is a major concern and is extremely crucial for the correct 

transmission of the packet. For the high data rate case, the challenge is overcoming the 
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presence of the stopbands by either avoiding them or compensating for the losses they 

cause. 

This dissertation is organized as follows. First, a survey of energy efficient 

communication systems and synchronization algorithms is conducted in the literature. 

Second, the channel response is fully characterized in chapter II. Then in chapter III, an 

OFDM communication system for the long packet case is proposed. Chapters IV, V, VI, 

and VII treat the design of signaling format and the synchronization problem for the 

short packet case. Finally, all synchronization stages are combined in chapter VIII to 

study the effect of propagating errors and how to limit them. 

Literature Review 

There has been a significant amount or works in the literature dealing with each 

of the topics of this dissertation. We will focus on the works that deal with energy 

efficiency and synchronization for short packets. When it comes to the topic of energy 

efficient communication combined with error correction codes [2] that can be applied to 

short packets, the following works are noteworthy. The authors of [3] attempt to find 

balance between energy efficiency and bandwidth efficiency for short packet 

communications. The authors of [4] combine erasure-correction and error-correction 

decoding for a more reliable transmission and studies the tradeoff between relying on 

one over the other. The works of [5,6] find bounds on coding rates for short packet 

transmission over Rayleigh fading channels in addition to multiple antennas 

transmission schemes. A review of short packet communication techniques is provided 

in [7]. The parameters that affect efficiency of a communication system are identified in 
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[8]. The author of [9] finds bounds on the best possible probability of error for coded 

systems in a Gaussian channel while the authors of [10] finds the best possible 

probability of error as a function of the block size. The work of [11] models a channel 

with synchronization errors as a duplication, deletion, and substitution channel. Finally, 

[12] finds the block error probability of convolutional codes treated as block codes. 

When trying to look for answers on synchronization for coded short packets, 

some works in the literature mentioned an entirely unique class of codes designed for 

synchronization known as comma-free codes. The author of [13] talks about error 

correcting codes where any code formed by the concatenation of the tail of one code 

with the beginning of the next code is not a valid code. The author of [14] provides a 

guideline for creating comma-free codes with the maximal number of words. Then, [15] 

constructed high rate comma-free codes by combinatorial design. However, comma-free 

codes are only useful when trying to distinguish between two consecutive codes. Our 

problem consists of performing the different levels of synchronization on a single 

transmitted code surrounded by noise. Therefore, we needed to find more answers. 

For coarse and symbol synchronization on short packets, no sufficient answers 

were found in the literature while the standard synchronization techniques such as 

Gardner [16], Early-Late [17], and Mueller-Muller [18] did not offer a satisfying 

performance over an energy-based detection method. For phase synchronization, [19] 

proposes a phase estimation technique that uses a pilot symbol as an initial guess and 

improves on it by iterative soft decision decoding. The work of [20] uses Monte Carlo 

methods to estimate the distribution of the unknown phase and proposes several 



 

5 

 

approximations to simplify the algorithm. Carrier and phase synchronization of short 

packet turbo coded signals is proposed in [21] by maximum likelihood iterative soft 

decision or maximizing the Mean Squared Soft Output cost function. Then, [22] resolves 

the phase ambiguity using Hypothesis Testing on different frame synchronization 

algorithms. 

Meanwhile at the frame synchronization stage, there has been a significant 

number of works that can be divided in two categories. The first category is for works 

that utilize a known pilot sequence or a sync word to perform the synchronization 

operation. For example, [23] performs frame synchronization by correlating the received 

signal with the pilot sequence and choosing the time delay that maximizes this 

correlation. A synchronization technique is proposed in [24] and provides several most 

likely frame starting positions and narrows it down to one. This is known as the List 

Synchronizer. Then, [25] achieves Maximum a Posteriori (MAP) frame synchronization 

using packet energy and the sync word to find the packet starting location. The work of 

[26] derives the Maximum Likelihood (ML), correlation, and high Signal-to-Noise Ratio 

(SNR) rules for frame synchronization in Additive White Gaussian Noise (AWGN) 

channels while [27] repeats the same exercise for flat fading channels. Then, [28] 

provides lower bounds for ML, correlation, and high SNR frame synchronization 

decision rules in AWGN channels. The author of [29] proposes improving frame 

synchronization by terminating the trellis at the all zero state when using convolutional 

codes. In [30], frame synchronization is performed by treating the received symbols as a 

Markov chain in AWGN. 
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The second category of works exploits the presence of error correction codes to 

aid the synchronization. For instance, [31] proposes an algorithm that uses the code 

structure and combining two previous algorithms. This algorithm uses mode separation 

to estimate the frame boundary where a Log-Likelihood Ratio (LLR) is computed and its 

distribution is plotted. The correct frame starting position is the one with the most 

bimodal distribution. A frame synchronization method that inserts the pilots as a mid-

amble instead of the preamble is proposed in [32] and uses the decoder to determine the 

frame location as the mid-amble will be recognized later at the decoding stage. The work 

of [33] performs blind frame synchronization by checking if the observed frame is a 

valid code word and [34] uses the same idea on cyclic codes. A synchronization 

algorithm is developed in [35] and uses the code structure to eliminate the need for 

overhead through Factor Graphs and the Sum-Product Algorithm [36]. The authors of 

[37] implement code-aided frame synchronization using decoder decisions as MAP 

probabilities for Low Density Parity Check (LDPC) and Turbo codes and the authors of 

[38] use the structure of Turbo codes to perform frame synchronization without 

preamble. An iterative receiver without preamble using Expectation Maximization and 

the Sum-Product Algorithm is introduced in [39]. A comparison of different algorithms 

that use the code structure for frame synchronization and phase ambiguity resolution can 

be found in [40] while [41] proves that frame synchronization techniques using the code 

structure with no overhead coincide with the MAP frame synchronization under certain 

conditions. Finally, [42] proposes a blind MAP frame synchronization method for codes 

having a sparse parity check matrix and analyzes it further in [43]. 
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CHAPTER II  

CHANNEL CHARACTERIZATION 

 

Before we design a communication system, we need to find out what the channel 

response looks like. The channel in this case is a sequence of steel pipes that were 

interconnected by joints. These pipes will be acoustically vibrated by a transmitter. 

Then, several receivers and relays will be placed along the way to pick up the signal and 

relay it further until its final destination. It was proposed in [44] and experimentally 

verified in [45] that these pipes have frequency selective properties with certain fixed 

frequency passbands and stopbands. If a signal is transmitted at a frequency that falls in 

a stopband, it will be effectively lost. While if it is transmitted at a frequency that falls in 

a passband, the message will go through but might suffer from a magnitude loss whose 

strength depends on which passband was chosen in addition to a phase shift. 

The experimental results of [45] showed that the acoustic vibration of the pipe 

strings excites three vibrational modes. The first mode is the longitudinal L(0,1) mode 

where vibrations take place in the radial and azimuthal directions of the pipes. The 

second is the torsional T(0,1) mode where vibrations take place in the azimuthal 

direction. The last is the flexural F(1,1) mode where vibrations take place in all three 

radial, longitudinal, and azimuthal directions. It was also shown in these experiments 

that the L(0,1) mode is the most dominant in terms of amplitude clearly overwhelming 

the others two. 
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Assuming longitudinal excitation only, we ran a simulation in order to visualize 

the channel response. In this simulation, an OFDM signal with Binary Phase Shift 

Keying (BPSK) subcarriers composed of a known sequence of +1s and -1s was 

transmitted. This way, we set up the received signal to easily extract the channel’s 

frequency and phase response. If 𝑥 is the transmitted signal and 𝑦 is the received signal 

in a noise-free environment, then the channel gain ℎ(𝑓) and the phase offset 𝜃(𝑓) for 

each frequency can extracted in the following manner: 

 𝑦(𝑡) = ℎ(𝑓)𝑥(𝑡)𝑒𝑗(𝜃(𝑓)+𝑎𝑛𝑔𝑙𝑒(𝑥(𝑡)) (2.1) 

Since 𝑥 is a known sequence of +1s and -1s and the channel gain and phase offset are 

constant in time, then: 

 𝑦(𝑡) = {
ℎ(𝑓)𝑒𝑗𝜃(𝑓), 𝑖𝑓 𝑥(𝑡) = 1

−ℎ(𝑓)𝑒𝑗(𝜃(𝑓)+𝜋), 𝑖𝑓 𝑥(𝑡) = −1
 (2.2) 

 ℎ(𝑓) = |𝑦(𝑡)| (2.3) 

 𝜃(𝑓) = {
𝑎𝑛𝑔𝑙𝑒(𝑦(𝑡)), 𝑖𝑓 𝑥(𝑡) = 1

𝑎𝑛𝑔𝑙𝑒(𝑦(𝑡)) − 𝜋, 𝑖𝑓 𝑥(𝑡) = −1
 (2.4) 

The bandwidth of this signal spans the frequencies between 500Hz and 3kHz 

with a frequency spacing of 2Hz for each OFDM subcarrier. This signal was allowed to 

propagate through a sequence of 100 steel pipe segments interconnected by joints. The 

parameters of these pipes and joints are summarized in table 2.1. 
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Table 2.1: Dimensions of the pipe segments and joints 

 

Outer Diameter 

(mm) 

Thickness (mm) Length (m) 

Pipe Segments 73.66 3.81 9.86665 

Joints 95.25 15.87 0.13335 

 

The signal was then received at the beginning of the 10th,20th,30th,40th, and 50th 

pipe segments out of the total 100 segments used. 

We will look at the channel’s frequency response, phase response, and 

demonstrate how the different reflections from the beginning and end of the pipes and all 

the joints along the way interfere with the desired signal and cause Inter-Symbol-

Interference (ISI). The magnitude of the received symbols was considered to be the 

channel frequency response while their phase was taken as the channel phase response 

after subtracting 180˚ in case the transmitted symbol had a negative sign. 

Frequency Response 

Figure 2.1 shows what the channel frequency response looks like when the signal 

is measured at the beginning of the 10th pipe segment. It clearly shows the presence of 

passbands and stopbands as they were expected to occur. 
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Figure 2.1: Channel response measured at pipe no. 10 out of 100 pipe segments 

 

 

We can clearly observe from figure 2.1 that as the carrier frequency increases the 

passbands get narrower and weaker and that the stopbands get wider and deeper. First, 

let’s examine how the width of the passbands and stopbands change. Tables 2.3 and 2.4 

and figure 2.2 fully describe this behavior. The largest passband has a width of 214Hz 

and the next passbands shrink in an almost linear fashion. The exact opposite happens to 

the stopbands where the first stopband is 54Hz wide and the next ones linearly increase 

in width. 
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Table 2.2: Approximate width of the passbands measured at pipe no. 10 out of 100 

Passband 

No. 

1 2 3 4 5 6 7 8 9 10 

Beginning 

Frequency 

(Hz) 

528 796 1064 1332 1600 1872 2138 2406 2678 2940 

Ending 

Frequency 

(Hz) 

742 994 1248 1504 1758 2006 2266 2522 2774 3030 

Bandwidth 

(Hz) 

214 198 184 172 158 134 128 116 96 84 

  

Table 2.3: Approximate width of the stopbands measured at pipe no. 10 out of 100 

Stopband 

No. 

1 2 3 4 5 6 7 8 9 

Beginning 

Frequency 

(Hz) 

742 994 1248 1504 1758 2006 2266 2522 2774 

Ending 

Frequency 

(Hz) 

796 1064 1332 1600 1872 2138 2406 2678 2946 

Bandwidth 

(Hz) 

54 70 84 96 114 132 140 156 172 
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Figure 2.2: Passband and stopband width vs. carrier frequency 

 

 

The strength of the passbands and the depth of the stopbands also change both in 

frequency and distance as we move further down the sequence of pipes from the 10th 

pipe to the 50th pipe. Tables 2.4 and 2.5 and figures 2.3-2.6 describe this behavior. In 

terms of distance, the same passband experiences an exponential (linear in dB) decay in 

strength as the measurement location goes farther down the pipe strings. In a similar 

fashion, stopbands will linearly gain more depth. In terms of frequency and at the same 

distance, the passbands will exponentially lose strength as the frequency increases. On 

the other hand, the stopbands will linearly get deeper for higher frequencies. 
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Table 2.4: Passband strength (dB) vs. distance 

Location\Passban

d No. 

1 2 3 4 5 6 7 8 9 10 

10 -0.5 

-

0.7

5 

-1 -1.5 

-

2.1

5 

-3 -4 -5.15 -6.7 -8.5 

20 

-

0.85 

-1.4 

-

2.1 

-3 -4.3 -5.8 -7.8 

-

10.2

5 

-

13.

3 

-17 

30 -1 -2 

-

3.2 

-4.5 -6.4 -8.7 -11.7 -15.4 -20 -25.4 

40 -1.4 -2.6 

-

4.1 

-6 -8.5 

-

11.

2 

-

15.5

5 

-20.4 

-

26.

6 

-34 

50 -2.5 -4 -6 -8 

-

10.

8 

-

14.

6 

-19.4 -25.5 

-

33.

2 

-

42.3

5 
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Table 2.5: Stopband depth (dB) vs. distance 

Location\Stopban

d No. 

1 2 3 4 5 6 7 8 9 

10 -26.5 -35 -42.8 -51 -57.5 -68 -72 -79 -85 

20 -43 -54 -66 -63.6 -84 -85 

-

97.2

5 

-102 -110.5 

30 -45.5 

-

54.

4 

-75.5 

-

74.7

5 

-85.4 

-

89.4

5 

-

105.

5 

-

112.

2 

-124.1 

40 

-

57.6

5 

-

55.

1 

-72.8 -74 -99.15 -98 

-

115.

8 

-

123.

2 

-138.6 

50 -52.2 -61 

-

86.3

5 

-

89.5

5 

-

102.5

5 

-

109.

7 

-

127.

5 

-

135.

3 

-

153.7

5 
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Figure 2.3: Passband strength vs. distance 

 

 

Figure 2.4: Stopband depth vs. distance 
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Figure 2.5: Passband strength vs. frequency 

 

 

Figure 2.6: Stopband depth vs. frequency 
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Phase Response 

In addition to the frequency response, the channel also introduces an unknown 

phase offset to all symbols transmitted at the same frequency. Unlike the frequency 

response, the phase response of the channel is not fixed and very difficult to predict. Any 

inaccuracy in the estimation of the time delay, can result in a different phase offset. 

Figure 2.7 shows an example of this phase offset where the signal constellation was 

either rotated by about 45˚ counter clockwise or by about 135˚ clockwise. In this figure, 

the dots represent the noisy received symbols for a BPSK signal. 

 

 

Figure 2.7: Phase offset induced by the channel 
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Effect of Measurement Location 

We also test the effect of the measurement location within the same pipe segment 

on the channel gain and phase offset. We used 50 steel pipes whose dimensions are the 

same as in table 2.1 and transmitted the same signal as before. The measurements were 

performed at the end and the middle of the 25th pipe segment and the channel gain is 

shown in figures 2.8 and 2.9 for the end and middle measurements respectively. While 

the locations of the passbands and stopbands in figures 2.8 and 2.9 are the same, the 

shape and strength of the passbands are different. For the measurements at the end of the 

pipe segment, the passbands are somewhat flat. Meanwhile for the measurements at the 

middle of the pipe segment, the passbands are slanted and offer a positive (in dB) 

channel gain that can amplify the signal if those frequencies were used for transmission. 
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Figure 2.8: Channel gain vs. carrier frequency measured at the end of pipe no. 25 

out of 50 pipe segments 

 

 

Figure 2.9: Channel gain vs. carrier frequency measured in the middle of pipe no 

.25 out of 50 pipe segments 
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If we repeat the same experiment and make the measurements at the 10th pipe 

segment instead of the 25th segment, we get a similar shape but we start to see some 

fluctuations show up in the first passbands for both frequency and phase responses as 

shown in figure 2.10 and 2.11. This behavior was predicted and explained in [44]. For n 

pipe segments, we expect to see n fluctuations because each of the pipe segments 

requires a frequency change to fit an extra half of a wavelength causing a resonance at 

those frequencies. Since the strength of the passbands decays as a function of distance 

and frequency, these fluctuations will in turn lose strength until they disappear.  

 

 

Figure 2.10: Channel gain and phase offset vs. carrier frequency measured at the 

end of pipe no. 10 out of 50 pipe segments 
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Figure 2.11: Channel gain and phase offset vs. carrier frequency measured in the 

middle of pipe no. 10 out of 50 pipe segments 

 

 

Inter-Symbol-Interference 

Since the acoustic wave is used to vibrate the pipes and carry the information, we 

expect to see several reflections at the receiver that can be placed in two categories. The 

first category is the reflections coming from the joints and those arrive much sooner but 

are weaker. The second category is the reflections coming from the end and the 

beginning of the pipe strings and they arrive later but are stronger than the joints 

reflections. Depending on the measurement location, these reflections can arrive before 

the end of the desired signal and cause an unwanted interference. The reflected 

waveform representing a transmitted symbol will interfere with the desired waveform 

representing another symbol causing a distortion. This is known as Inter-Symbol-
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Interference. Figure 2.12 shows this behavior and the presence of reflections for the 

transmitted signal in a noise-free environment.  

 

 

Figure 2.12: Received signal in a noise-free environment 

 

 

Given the channel’s frequency selectivity, we propose two different solutions for 

the two communication modes of our application. For the broadband case where an 

image or a video is transmitted, we will design an OFDM signal whose bandwidth spans 

multiple passbands and avoids all the stopbands in-between. For the narrowband case 

where sensor readings consisting of very short packets are periodically transmitted, we 

will design a single carrier system whose bandwidth fits inside one passband and find 

the synchronization algorithms that give us the best possible performance with minimal 

complexity. 
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CHAPTER III  

HIGH DATA RATE COMMUNICATION SYSTEM 

 

Application Requirements 

Before we can design this communication system, we need to know the required 

data rate to support this application. We would like to be able to transmit either a short 

video or small image. The design constraint is that the signal should not last more than 

one minute in order to quickly receive the video or the image. However, the spectrum 

that we need to use is limited to 2.5-3kHz and half of which is unusable stopbands. We 

also noticed that the passbands quickly decay in amplitude as the bandwidth increases. 

This means that a significant portion of the signal will suffer from a major loss and will 

require a lot of equalization and signal processing to recover the losses. In order to avoid 

the high receiver complexity, we propose using an OFDM system that allows for high 

data rates while minimizing receiver complexity. This system eliminates the need for 

equalization because it splits the broadband frequency selective channel into much 

narrower sub-channels where the bandwidth of each sub-channel is sufficiently small 

that each sub-channel behaves in a non-frequency-selective manner. 

The total bandwidth of the passbands is approximately 1484Hz. In an OFDM 

system, this translates to about 1484 bits/sec if we intend to use all of them. In table 3.1, 

we summarize the application specifications and the required data rate for the signal to 

not last more than one minute. 
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Table 3.1: Required data rate for each proposed application 

Application Compression Ratio 

Required Data Rate 

(bits/sec) 

5 Seconds Video (240p, 

256 colors, 24 frames/sec) 

30:1 44800 

Image (480x480 pixels, 

256 colors) 

10:1 3072 

Image (480x480 pixels, 16 

colors) 

10:1 1536 

 

 

We can immediately see that the video application is not achievable for this 

channel as it requires a signal constellation with more than 2 billion points if we intend 

to use all passbands in the spectrum. However, the colored images are achievable and we 

will go through the design process for the communication system for each one of them in 

the next sections. 

Signaling Format 

In an OFDM system, the transmitted symbols are split across both time and 

frequency such that those frequencies, often referred to as subcarriers, are orthogonal. 

The spacing between those frequencies is chosen such that the channel response in that 

very narrow bandwidth is flat which eliminates the need for equalization at the receiver. 

The orthogonality of those frequencies allows for their corresponding waveforms to be 
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transmitted at the same time without any self-interference. For a given bit rate 𝑅𝑏 =
1

𝑇𝑏
 

where 𝑇𝑏 is the bit duration and a number of subcarriers 𝑁𝑐, the frequency spacing is 

proportional to the bit rate: 

 ∆𝑓 ∝
1

𝑁𝑐𝑇𝑏
=
𝑅𝑏
𝑁𝑐

 (3.1) 

Then, the transmitted symbols can be split between time and frequency as shown in 

figure 3.1. 

 

 

Figure 3.1: Splitting of symbols in an OFDM system 

 

 

We need carefully choose the carrier frequency and the data rate to match the 

width and location of the used passbands. This can be done by placing the carrier 

frequency at the start of the first used passband and choosing the data rate such that the 

signal bandwidth ends at the edge of the last used passband. Since the strength of the 
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passbands decays as a function of frequency, it will be more energy-efficient to start 

with the first passband in the frequency range of interest and extend the signal 

bandwidth to the next set of passbands that will be used. In order to avoid data falling in 

a stopband, we will place zeros in the frequencies that fall in the stopband. Since the 

passbands and stopbands locations are fixed in time, the receiver can easily pick off the 

transmitted data from the desired frequencies. 

The OFDM transmission can be achieved by following the procedure outlined in 

figure 3.2. The inverse Fast Fourier Transform is used to place the transmitted symbols 

at the desired frequency spacing. Once that is achieved, a portion is copied from the end 

of each OFDM symbol and placed before the same OFDM symbol in time. This 

procedure is known as inserting a cyclic prefix and it is done to combat ISI where a 

waveform representing one symbol interferes with and distorts the waveform 

representing another symbol. Finally, the signal is mounted on a carrier frequency to 

create the waveforms with the desired orthogonal frequencies and the OFDM symbols 

are transmitted sequentially in time. This process is then reversed at the receiver as 

shown in figure 3.2. 
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Figure 3.2: Procedure for transmitting and receiving an OFMD signal 

 

 

This process will result in a transmitted signal whose time and frequency 

characteristics are shown in figure 3.3. It can clearly be seen that the signal spectrum 

mirrors the frequency response of the channel where all the meaningful data was placed 

in the passbands while zeros were placed in the stopbands. 



 

28 

 

 

Figure 3.3: OFDM signal in time and frequency domains 

 

 

Synchronization 

The first OFDM symbol is used as a pilot symbol that is known at the receiver. 

This is done to perform both time and phase synchronization. For time synchronization, 

the pilot OFDM symbol is reconstructed at the receiver and correlated with the received 

signal and the time delay with the highest correlation is considered to be the correct time 

delay. For phase synchronization, figures 2.10 and 2.11 showed that the channel’s phase 

response changes with each carrier frequency. Hence, each subcarrier requires its own 

phase synchronization procedure. For each subcarrier, the phase of the pilot symbol is 

used to estimate the offset, resolve the phase ambiguity, and correct the phase offset. 

Since the pilot phase is known at the receiver, it can be used to resolve the 180˚ phase 

ambiguity of whether the signal constellation was rotated by 𝜃𝑘 or 𝜃𝑘 + 𝜋 in the counter 

clockwise direction where 𝜃𝑘 is the phase offset estimate for the kth subcarrier. Once the 



 

29 

 

phase offset is estimated and the ambiguity is resolved, the signal constellation can be 

rotated by the appropriate amount to undo this offset. 

 

 

Effect of Different Parameters on Performance 

Effect of Frequency Spacing 

As mentioned earlier, the frequency spacing (subcarrier bandwidth) ∆𝑓 for an 

OFDM system has a big effect on performance when the passband used has a lot of 

fluctuations as shown in figures 2.10 and 2.11. Smaller frequency spacing will lead to 

better performance as the channel response within the subcarrier bandwidth becomes 

more flat. We ran a simulation to test the performance for a frequency spacing of 1Hz, 

2Hz, 4Hz, 6Hz, and 12Hz. In this simulation, the OFDM signal had a narrowband and its 

bandwidth was able to fit inside the first passband at a carrier frequency of 1.1kHz and 

the bit rate was fixed to 48 bits/sec. The measurements were recorded at the end of the 

10th pipe string out of a total of 50 pipe strings. The results are shown in figure 3.4 and 

indicate that the smallest frequency spacing offered a better performance over the others. 

The 2Hz frequency spacing was used for the rest of the simulations since there was 

minimal difference between the 1Hz and 2Hz case. 
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Figure 3.4: Effect of frequency spacing on the performance of OFDM in pipe 

strings 

 

 

Effect of Cyclic Prefix 

Since an OFDM system requires inserting a cyclic prefix to combat ISI and 

simplify the channel estimation process, we need to know how long does the cyclic 

prefix need to be in order to guarantee the best possible performance. Usually, longer 

cyclic prefix leads to better performance as the guard interval gets bigger and giving 

more time for the reflections of each OFDM symbol to arrive and then get discarded. 

However, longer cyclic prefix requires adding more overhead to the signal and thus 

increasing the cost of transmission. Thus, we need to choose the length of the cyclic 

prefix that offers the best overall performance. We tested different scenarios where the 

length of the cyclic prefix was 50%, 25%, 12.5%, and 6.25% of each OFDM symbol. 

The same signal for the frequency spacing test was used in this test and the results are 
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illustrated in figure 3.5. The results show that for low SNR, the smaller percentages of 

cyclic prefix were slightly better because most of the errors were caused by noise rather 

than ISI. Thus, the extra cost of overhead for longer cyclic prefix made the performance 

slightly worse. But for larger SNR, most of the errors are caused by ISI so the longer the 

cyclic prefix, the better the performance gets. The field testing done in [45] showed that 

the signal strength was between 0.2V to 1V while the noise was 1mV. This means that 

we expect to operate with an SNR for 45-60dB. Therefore, we will choose the 50% 

cyclic prefix for the rest of the simulations in this chapter. 

 

 

Figure 3.5: Effect of cyclic prefix length on the performance of OFDM in pipe 

strings 
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Effect of Bandwidth 

We would like to test the effect of the bandwidth (number of passbands) on the 

overall performance of the proposed OFDM communication system. From what we 

know about the channel’s frequency response, the passbands get weaker and narrower 

for higher frequencies. This means that from the point of view of power efficiency, it is 

more efficient for the signal bandwidth to be accommodated inside one passband and the 

more passbands are added, the worse the performance will get. However, since the 

application requires the bandwidth to span multiple passbands, we need to know many 

passbands we can use before performance is significantly degraded. We ran a simulation 

where the number of passbands included in the signal bandwidth was incrementally 

increased and used the proposed convolutional code with QPSK modulation. Figure 3.6 

illustrates the results and confirms that as the number of passbands increases, the 

performance gets worse. In this test, the signal was measured at the 10th pipe string out 

of 50. 
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Figure 3.6: Effect of bandwidth on the performance of OFDM in pipe strings 

 

 

Effect of Channel Coding and Modulation Order 

In order to accommodate the application requirements, we need to find the right 

combination of modulation order and code rate. During the design process, we may have 

to compare a system with a lower modulation order and a higher code rate against 

another communication system with a higher modulation order and a lower code rate. 

Generally, the number of errors caused by increasing the modulation order is bigger than 

the increase in error-correction capability caused by lowering the code rate. To illustrate 

this with an example, a QPSK system with a rate 1/2 code is better than an 8-PSK 

system with a rate 1/3 code which is in turn better than a 16-PSK system with a rate 1/4 

code as shown in figure 3.7. 
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Figure 3.7: Comparison of performance for modulated systems with convolutional 

codes 

 

 

When channel coding is used, it generally offers a great advantage over an 

uncoded system in terms of bit error rate. However, this is only true when the SNR is 

high enough because at low SNR, error-correction codes will perform worse than the 

uncoded systems as the number of errors exceeds the error-correction capability of the 

code. In this scenario, the closest codeword to the received codeword will be different 

from the transmitted codeword. Hence, the decoding algorithm will return the wrong 

codeword and end up creating more errors. For each combination of modulation and 

error-correction code, there is an SNR threshold where the coded system overtakes the 

uncoded system and starts to perform better from that point forward. This threshold will 

get higher as the modulation order gets higher. For example, the coded system will 

quickly outperform the uncoded system when BPSK or QPSK are used. But as the 
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modulation order increases to 8, 16, 32, and so on, the SNR threshold will quickly get 

higher as shown in figures 3.8-3.10 in an AWGN channel. 

 

 

Figure 3.8: Comparison of coded and uncoded 8-PSK in an AWGN channel 

 

 

 

Figure 3.9: Comparison of coded and uncoded 16-PSK in an AWGN channel 
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Figure 3.10: Comparison of coded and uncoded 32-PSK in an AWGN channel 

 

 

In addition, the presence of a channel gain can positively or negatively affect this 

SNR threshold. If the channel gain is positive (in dB) and boosts the signal, the SNR 

threshold will get lower. If the channel gain is negative (in dB) and weakens the signal, 

the SNR threshold will get higher. This phenomenon is shown in figures 3.11-3.13 for a 

16-QAM system. When the modulation order is further increased to 64-QAM in figure 

3.14, the combination of the negative channel gain and the high modulation order will 

push the SNR threshold much higher. 
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Figure 3.11: Performance of 16-QAM in the presence of 1dB channel gain 

 

 

 

Figure 3.12: Performance of 16-QAM in the presence of -1dB channel gain 
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Figure 3.13: Performance of 16-QAM in the presence of -3dB channel gain 

 

 

 

Figure 3.14: Performance of 64-QAM in the presence of -3dB channel gain 
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Design Process and Results 

Finding the best possible communication system requires the optimization of five 

different parameters: data rate (or application), propagation distance, modulation order, 

code rate, and the bit error rate. This will lead to an almost infinite number of possible 

designs. If we fix a subset of these parameters and modify the others to find the best 

system, the result will be different if we fix another subset of these parameters and 

modify the remaining ones. For example, if we want to design a system to operate over a 

fixed short distance, a system with larger bandwidth (more passbands) may perform 

better than a system with a narrower bandwidth (less passbands). However, if we fix the 

data rate, a system with less passbands will perform better than a system with more 

passbands over longer distances. 

In order to limit the scope of the design process, we will fix the data rates for 

each application, as in table 3.1, and attempt to find the system that can travel the longest 

distance before the bit error rate falls below 0.1%. We came up with a design procedure 

and an elimination process to limit the number of possible designs for each application. 

This procedure may not lead to the best possible design but will try to get as close as 

possible to it. There are three guidelines that we will use during this process to eliminate 

some of the possible designs. These guidelines are: 

- If two communication systems use the same modulation order and different 

numbers of passbands. The one with more passbands will be eliminated in favor 

of the one with less passbands. This is justified by the results of figure 3.5. 



 

40 

 

- A communication system with a higher modulation order and a lower code rate 

will be eliminated in favor of a communication system with a lower modulation 

order and a higher code rate. This is justified by the results of figure 3.6. 

- A communication system with a very high modulation order (greater than 4096) 

will be eliminated to reduce receiver complexity and avoid very poor 

performance. 

The design process will follow the next steps for each application: 

- Step 1: Given the required data rate, find the required number of bits per symbol 

and the modulation order 𝑀 for each number of passbands by: 

 𝑀 = 2⌈
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
⌉
 (3.2) 

- Step 2: Eliminate any communication system if there is another one with the 

same modulation order and less passbands or if 𝑀 > 4096. 

- Step 3: For each passband from the remaining options, calculate the required 

code rate by: 

 𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒 =
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × log2𝑀
 (3.3) 

- Step 4: Choose a new code rate from a selection of available rates such as: 1/3, 

1/2, 2/3, 3/4, and 1 (no coding). Calculate the new modulation order by: 

 𝑀𝑛𝑒𝑤 = 2
⌈

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ×𝑁𝑒𝑤 𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒

⌉
 (3.4) 

- Step 5: Choose the lowest code rate from the selection such that 𝑀𝑛𝑒𝑤 ≤ 2𝑀. 

- Step 6: Calculate the resulting data rate and verify that it is greater than or equal 

to the data rate required by the application. 
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- Step 7: Look up the required SNR to reach a bit error rate of 0.1% for 𝑀-ary 

modulation and the coding gain for the chosen code if applicable. 

- Step 8: Calculate the SNR margin by: 

 

𝑆𝑁𝑅 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑁𝑅 − 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝑁𝑅 𝑓𝑜𝑟 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝐶𝑜𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛 

(3.5) 

- Step 9: Approximate the achievable distance by finding how many pipe segments 

the signal can travel before the channel gain is below −𝑆𝑁𝑅 𝑀𝑎𝑟𝑔𝑖𝑛. We will 

use the results of figure 2.3 and perform interpolation if necessary. For a system 

with multiple passbands, we will only look at the channel gain of the last 

passband since losing the symbols transmitted at that passband will result in a bit 

error rate that exceeds the chosen 0.1% limit. 

- Step 10: Choose the system that can achieve the longest distance. 

Tables 3.2 and 3.3 show the results of step 1 for both image applications. 
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Table 3.2: Required modulation order for a colored image (16 colors) 

Bandwidth 

Required Number of 

Bits/Symbol 

Modulation Order 

10 Passbands (1484 Hz) 2 4 

9 Passbands (1400 Hz) 2 4 

8 Passbands (1304 Hz) 2 4 

7 Passbands (1188 Hz) 2 4 

6 Passbands (1060 Hz) 2 4 

5 Passbands (926 Hz) 2 4 

4 Passbands (768 Hz) 2 4 

3 Passbands (596 Hz) 3 8 

2 Passbands (412 Hz) 4 16 

1 Passband (214 Hz) 8 256 
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Table 3.3: Required modulation order for a colored image (256 colors) 

Bandwidth 

Required Number of 

Bits/Symbol 

Modulation Order 

10 Passbands (1484 Hz) 3 8 

9 Passbands (1400 Hz) 3 8 

8 Passbands (1304 Hz) 3 8 

7 Passbands (1188 Hz) 3 8 

6 Passbands (1060 Hz) 3 8 

5 Passbands (926 Hz) 4 16 

4 Passbands (768 Hz) 4 16 

3 Passbands (596 Hz) 6 64 

2 Passbands (412 Hz) 8 256 

1 Passband (214 Hz) 15 32768 

 

After the elimination process in step 2, the remaining steps were performed on 

the surviving systems and the results are summarized in tables 3.4 and 3.5 where the 

initial SNR was 60dB. 
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Table 3.4: Approximate achievable distance for a colored image (16 colors) 

Bandwidth 4 Passbands 3 Passbands 2 Passbands 1 Passband 

Required Code 

Rate 

1 0.86 0.93 0.9 

Modulation 

Order 

4 8 16 256 

New Code Rate 2/3 3/4 3/4 1 

New 

Modulation 

Order 

8 16 32 256 

New Data Rate 1544 1597 1545 1712 

Required 

Modulation 

SNR (dB) 

10 11 14 22 

SNR Margin 

(dB) 

56 55 52 38 

Approximate 

Achievable 

Distance (No. 

Pipes) 

378 490 463 412 
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Table 3.5: Approximate achievable distance for a colored image (256 colors) 

Bandwidth 6 Passbands 4 Passbands 3 Passbands 2 Passbands 

Required Code 

Rate 

0.96 1 0.86 0.93 

Modulation 

Order 

8 16 64 256 

New Code Rate 3/4 1 3/4 1 

New 

Modulation 

Order 

16 16 128 256 

New Data Rate 3180 3072 3129 3296 

Required 

Modulation 

SNR (dB) 

11 11 18 22 

SNR Margin 

(dB) 

55 49 48 38 

Approximate 

Achievable 

Distance (No. 

Pipes) 

202 336 434 355 
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According to the results of table 3.4 and 3.5, we need to use 3 passbands for both 

applications. The 16 colors image requires 16-QAM modulation with a rate 3/4 code 

while the 256 colors image requires 128-QAM modulation with a rate 3/4 code. Both 

systems were implemented and signals for the 16 and 256 colors image can respectively 

travel slightly more than 6km (600 pipe segments) and between 5km and 6km (500-600 

pipe segments) before falling below the bit error rate threshold of 0.1%. At 6km, the bit 

error rate for the 16 colors image was 0.085%. For the 256 colors image, the bit error 

rate was 0.035% at 5km and 0.65% at 6km. Both systems outperformed the expectations 

in tables 3.4 and 3.5. 
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CHAPTER IV  

LOW DATA RATE COMMUNICATION SYSTEM 

 

Signaling Format 

We now proceed to designing a single carrier narrowband communication system 

for the first mode of transmission in our application where sensor readings are 

periodically transmitted through acoustic vibration of the pipes. In this application, the 

required data rate (1-50 bits/sec) is small enough for the signal bandwidth to fit inside 

one passband. The sensor readings consist of a few dozen bits transmitted at low power 

and very low data rates. We expect a packet of 10-30 information bits to be encoded 

using an error-correction code and modulated using a BPSK scheme. 

BPSK is chosen in this scenario because it offers the best power efficiency 

among all M-ary PSK, M-ary PAM, and M-ary QAM modulation schemes. Meanwhile, 

M-ary FSK offers better power efficiency for large M and is equivalent to an orthogonal 

BPSK signal encoded with a Hadamard code. However, orthogonal codes have a very 

low code rate of 
𝑘

2𝑘
 where 𝑘 is the number of information bits. It will be demonstrated 

later than low code rates do not offer a better performance for short packets when 

synchronization is taken into account. Hence, BPSK remains the best option for 

modulation. 

As for channel coding, we propose using a convolutional code to protect the 

information bits from errors. The reasoning behind this decision is that Turbo and LDPC 

codes are not suitable for short packets while block codes that are suitable for short 
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packets do not have a good enough error-correction capability. Hence, convolutional 

codes can operate on short packets while offering a decent error-correction capability. 

When it comes to pulse shaping, it will be demonstrated later that the choice of the pulse 

shape affects synchronization and the choice of the symbol rate affects the level of ISI in 

the received signal. Both parameters will have to be optimized to get the best possible 

performance under those circumstances. The carrier frequency will have to be chosen at 

the center of the passband if we intend to occupy the entire passband. If we want to take 

advantage of the positive channel gain when the measurements are taken in the middle 

of the pipe string and the passband is slanted, we may want to skew the carrier frequency 

toward the start of the passband. 

In general, a communication system works in the following manner: information 

bits get encoded with an error-correction code and modulated. Then, they get up-

sampled from one sample per symbol to match the sampling rate of the pulse shaping 

filter. Next, the up-sampled signal goes through the pulse shaping filter to receive its 

final form before transmission. The signal is then mounted on a carrier frequency and 

transmitted through the channel to reach the receiver where the mixers will bring it down 

to its baseband frequency. The received signal that has been corrupted by the channel is 

then put through the matched filter which is matched to the pulse shaping filter. From 

here, the synchronization stages begin. 

Synchronization for Short Packets 

Synchronization is necessary because the receiver does not know exactly when a 

signal is transmitted. There is also an unknown propagation delay where the signal 
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traveled for a duration of time between the transmitter and the receiver. The goal of 

synchronization is to let the receiver know exactly when the signal starts and to undo any 

phase offset caused by the channel so that the signal can be processed and the 

meaningful data can be successfully extracted. First at the coarse frame synchronization 

stage, the receiver tries to get a rough estimate of where the signal begins. Then, at the 

symbol synchronization stage, the receiver attempts to find the offset at which to down-

sample the output of the matched filter. Once down-sampling has been performed, the 

receiver will find the exact starting position of the signal and correct any phase offset. 

From there, the signal is demodulated and decoded to extract the desired information. 

The structure of this communication system is illustrated in figure 4.1. 

 

 

 

Figure 4.1: General structure of a communication system 
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In this dissertation, we will measure the performance of our communication 

system by the probability of packets loss. It is the probability that after all 

synchronization stages are done and after decoding the signal, the resulting decoded 

information bits are different from the transmitted information bits in at least one 

location. Our goal is to minimize this probability and the complexity of the 

synchronization process as much as possible by controlling different parameters and by 

choosing what we believe is the appropriate order for the different synchronization 

stages. We will perform all of our analysis on an AWGN channel for simplicity and then 

we will apply our results on the pipe strings. 

At the frame synchronization stage, we will be using a decoder-assisted method 

where the decoding algorithm for an error-correction code will determine the correct 

time delay. Our signal is very short in time and is placed inside a much larger 

uncertainty window at an unknown time. Using the decoder-assisted frame synchronizer 

will create an issue of complexity if each time delay is assumed to be equally likely to be 

the correct one. Therefore, we propose starting with a simple coarse and symbol 

synchronization algorithm that will narrow down the initial uncertainty window to a 

much smaller uncertainty window where complexity will be greatly reduced. We will 

illustrate this with an example. Let us suppose that 10 information bits were encoded to 

produce 20 coded bits. These coded bits went through a pulse shaping function to 

produce 200 samples where each coded bit is represented by 10 samples. Let us suppose 

that they are placed within an uncertainty window of size 2000 samples at a randomly 

chosen location. This means that there are 1800 possible time delays and our decoder 
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will to have to treat each one of them as a likely time delay and will have to run the 

decoding algorithm 1800 times. 

Now let us suppose that, through coarse synchronization, we managed to shrink 

this window to twice the size of the transmitted signal where it contains 400 samples. 

Inside this smaller uncertainty window, there are only 200 possible time delays so the 

decoder will have to run the decoding algorithm 200 times instead of 1800 times. We 

can reduce the complexity further through symbol synchronization techniques. Symbol 

synchronization helps the receiver find the correct time to down-sample the contents of 

the received window to retrieve the coded bits for the decoding procedure. If done 

correctly, we can further reduce the number of possible time delays to 20 times only. 

The decoder will now have to run the decoding algorithm 20 times instead of 1800 times 

without coarse and symbol synchronization. 

If we proceed to perform frame synchronization without symbol synchronization 

first, our chances of decoding the packet correctly will be greatly diminished as shown 

by the simulation results in figure 4.2 where the probability of packet loss was simulated 

for a packet of 10 information bits encoded using a rate 1/2 convolutional code in a 

window 20 times the size of the packet. In figure 4.2, we down-sampled the signal at on 

offset of 0.1𝑇𝑠 and 0.2𝑇𝑠, where 𝑇𝑠 is the symbol duration, to indicate how much loss is 

induced by not performing symbol synchronization before frame synchronization. 
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Figure 4.2: Effect of incorrect symbol synchronization on the probability of packet 

loss for a rate 1/2 convolutional code with 10 information bits 

 

 

Let us also suppose that the channel caused a phase offset where the received 

samples were rotated by an unknown amount in either direction. Given that the frame 

synchronization procedure relies on the coded bits modulated using BPSK instead of the 

overall energy of the packet, it must be done coherently. Therefore, we find it necessary 

to perform phase synchronization and undo this offset before we proceed to frame 

synchronization. In figure 4.3, we show the effect of performing frame synchronization 

without compensating the phase offset first. Coarse and symbol synchronization were 

assumed to be perfect in this simulation. 

 



 

53 

 

 

Figure 4.3: Effect of phase offset on the probability of packet loss for a rate 1/2 

convolutional code with 10 information bits 
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CHAPTER V  

COARSE AND SYMBOL SYNCHRONIZATION FOR VERY SHORT PACKETS 

 

Problem Setup 

At the beginning of the coarse synchronization stage, the signal is somewhere 

inside a large uncertainty window surrounded by Gaussian noise and the goal is to shrink 

it to a much smaller window where the signal is sure to be found. At this early stage, 

there are not many options available. We can either use a pilot sequence to crudely 

identify the beginning of the signal or try to detect an energy peak as the signal is likely 

to have more energy than the noise. We cannot use error-correction coding to try to 

identify a valid code word inside the window as we have to down-sample the signal and 

correct the phase offset first. The use of a pilot sequence on a short packet is not energy-

efficient as will be demonstrated later. Thus, our only choice is to detect an energy peak. 

Let us assume a BPSK modulated signal is transmitted in an Additive White 

Gaussian Noise channel. Let 𝑛 be the total number of coded bits in the transmitted 

packet and 𝑘 be the number of information bits. Let 𝑁𝑠𝑝𝑠 be the number of samples per 

symbol so the transmitted symbol has 𝑁 = 𝑛𝑁𝑠𝑝𝑠 samples of which 𝐾 = 𝑘𝑁𝑠𝑝𝑠 samples 

correspond to the information portion of the signal. Figure 5.1 illustrates the 

synchronization problem as it shows the output of the matched filter as a function of 

time. 
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Figure 5.1: Output of the matched filter 

 

 

In figure 5.1, 𝑀 is the coefficient of the large uncertainty window such that this 

window is 𝑀 times the length of the information portion of the signal (excluding any 

coded bits or overhead), 𝑚 is a rational coefficient indicating the size of the smaller 

uncertainty window such that 𝑚𝑁 is an integer, 𝑡0 is the signal starting time, and 𝑟[𝑡] is 

a sample of the received signal at the output of the matched filter: 

 𝑟[𝑡] = {
𝑠[𝑡 − 𝑡0] +𝑊[𝑡], 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑁 − 1

𝑊[𝑡], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.1) 

where 𝑠[𝑡] is the transmitted signal and 𝑊[𝑡] is a Gaussian noise sample from 𝒩(0, 𝜎2) 

such that 𝜎2 =
1

𝑘

𝑛
×
𝐸𝑏
𝑁0

. The notation 𝒩(𝜇, 𝜎2) indicates a Gaussian distribution with mean 

𝜇 and variance 𝜎2. 

At the coarse and symbol synchronization stage, a sliding window having a size 

of 𝑁 samples is swept across the samples of the matched filter output. In each case, the 

window is delayed by one sample. Then, its content gets down-sampled by a factor of 
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𝑁𝑠𝑝𝑠 and the energy for each set of samples is calculated each time. We define 𝑆𝑡 to be 

the energy of each sliding window: 

 𝑆𝑡 =∑|𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]|
2

𝑛−1

𝑖=0

 𝑓𝑜𝑟 𝑡 = 0,1, … , (𝑀 − 1)𝐾 − 1 (5.2) 

Then we will choose the sliding window that returned the highest energy. Let 𝑡0̂ 

be a coarse estimate of 𝑡0 that is found by: 

 𝑡0̂ = argmax
𝑡=0,…,(𝑀−1)𝐾−1

𝑆𝑡 (5.3) 

Once we found 𝑡0̂, we step back by 
𝑁(𝑚−1)

2
 samples to center the signal inside the 

smaller uncertainty window and select the next 𝑚𝑁 samples. The content of the smaller 

window is then down-sampled by 𝑁𝑠𝑝𝑠 producing the received samples that will be 

forwarded to the phase and frame synchronizer. If we choose to accept 𝑡0̂ as the correct 

time delay and proceed to decoding immediately, we will see a substantial loss in 

performance as indicated by the results in figure 5.2. Therefore, we need a much finer 

synchronization procedure to receive the packet correctly. 
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Figure 5.2: Comparison between decoder-assisted synchronization and energy-

based synchronization for a (24,10,3) convolutional code 

 

 

For convolutional codes, the notation (𝑛, 𝑘, 𝐾𝐿) will be used across this 

dissertation to respectively indicate the total number of coded bits 𝑛, the number of 

information bits 𝑘, and the constraint length of this code 𝐾𝐿. When convolutional codes 

are used on short packets, it is important to distinguish between the designed code rate 

and the effective code rate. We typically terminate the message with 𝐾𝐿 − 1 zeros to 

reset the encoder back to the all zero state, those extra zeros count as overhead when 

calculating the code rate. Both desired and effective code rates are calculated as follows: 

 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 =  
𝑘 + 𝐾𝐿 − 1

𝑛
 (5.4) 

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 =  
𝑘

𝑛
 (5.5) 
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Effect of Uncertainty Window Size 

In a typical monitoring sensor application where short packets are used, a 

battery-powered sensor is sleeping most of the time to conserve power but wakes up in a 

periodic fashion to make a reading of some parameter, convert that reading into a short 

sequence of bits, encode it, and then transmit it at the lowest possible SNR that 

guarantees an acceptable probability of error. On the other side, the receiver has been 

recording data for hours if not days expecting a transmission at any time. When this 

transmission takes place, the receiver has to sort through hours of noisy recordings to 

find the signal of interest. Since the transmitted packet is short, the signal will also be 

short in the time domain and is not likely to exceed 1 second. This less than 1 second 

signal is now concealed within hours of random noise. Let’s illustrate this with an 

example: if a signal consisting of 10 bits is transmitted every hour at a low bit rate of 10 

bits/sec, the signal lasts exactly 1 second and the receiver has an uncertainty window of 

3600 seconds where the 1 second signal is. Trying to find this signal without a long pilot 

sequence and at a relatively weak SNR is like trying to find a needle in haystack. The 

chances of finding this signal successfully can be very low and unsatisfactory. 

To quantify this problem, we need to run some simulations that can measure our 

chances of a successful transmission. We will measure the performance of the coarse 

and symbol synchronization algorithms by the probability of signal capture error 

(PSCE). The PSCE is the probability that a signal does not fall in its entirety inside the 

smaller uncertainty window after coarse and symbol synchronization. The main 

parameter that keeps us from getting an acceptable PSCE is the size of the large initial 
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uncertainty window described here by the coefficient 𝑀. In these simulation, we 

uniformly generated 10 information bits, encoded them using a convolutional code, 

modulated them using a BPSK scheme, and then placed them inside a window that is 𝑀 

times the size of the signal with additive noise simulating the AWGN channel. We ran 

the coarse and symbol synchronization algorithm and calculated the PSCE by using the 

Monte Carlo method. We count the number of times that the entire signal does not fall 

inside the smaller window and divide it by the total number of trials. The results of these 

simulations are shown in figure 5.3. In this particular simulation, a (24,10,3) 

convolutional code was used. 

 

 

 

Figure 5.3: Probability of signal capture error for a (24,10,3) convolutional code 

with a window M times the signal 
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These results indicate that the probability of capturing the entire signal in the 

smaller window rapidly increases as the window gets larger. If the entire signal is not 

captured in the smaller window, the chances of correctly decoding the packet are almost 

zero. At this point, we need alternative solutions. In our original problem of transmitting 

sensor readings used to monitor some parameter, one possible solution is transmission 

scheduling. In this setting, we program both the sensor and the receiver to wake up at a 

known time to record the value of the desired parameter and go back to sleep. For 

example, at the top of every hour, the sensor will make the reading, send it through, and 

go back to sleep. The receiver will wake up around the same time expecting an incoming 

signal, record it, process it, and then go back to sleep. This can result in a much smaller 

uncertainty window where 𝑀 is relatively small enough for us to be able to reliably find 

the signal. However, if an emergency transmission is to be made, we will have to make a 

decision depending on the urgency of this transmission. For example, if the message has 

a lower urgency and just a warning signal, we may have to wait until it is time for the 

next scheduled transmission and give a delayed response. However, if the urgency is 

high, we may have to accept a higher cost of transmission such as boosting the SNR or 

adding a long pilot sequence. Since emergency transmission do not occur very often and 

may be even rare, it may be feasible depending on the application to choose the latter 

option. Another option is to have a limited number of messages to transmit in case of 

emergency and pre-program those messages into the receiver so that the receiver can 

scan the observation window for these specific signals and be able to decode them. For 

example, in the context of oil and gas industry, if a leak is detected, the sensor will just 
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transmit the message “leak” or “leak detected” and the receiver knowing exactly what 

the binary sequence for this message is can search for it and decode it. 

Effect of Pulse Shaping 

It is important to note that the choice of the pulse shape will affect the 

performance of this coarse and symbol synchronization technique. In order to maximize 

the chances of 𝑡0̂ being as close as possible to 𝑡0, we believe the pulse shape needs to 

satisfy the following criteria: 

- For each symbol period, the autocorrelation of the pulse shaping function needs 

to produce only one clear peak. This makes the correct sampling time stand out 

above all the other possible sampling times. 

- The pulse shaping function needs to cross 0 between two consecutive symbols. 

This is done to force the output of the match filter to change value between two 

identical consecutive symbols making it more likely to detect the peak at the 

correct time delay. 

- The autocorrelation of the pulse shaping function needs to avoid immediate 

transition from its peak to zero and should have a relatively slow transition. This 

is done so that if the estimated time delay is off from the correct one by a few 

samples, we do not lose too much signal strength. 

To test the validity of these criteria, we ran several Monte Carlo simulations 

where each time, a different pulse shaping filter was used. Figure 5.4 shows the results 

of these simulations on the (24,10,3) convolutional code where a square pulse is 

compared to a triangular pulse, a delta function, and a half-square pulse where the square 
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function occupies half the duration of the pulse. The square pulse does not satisfy the 

second criterion while the delta function does not satisfy the third criterion. The triangle 

and half-square pulses satisfy all the criteria. 

 

 

 

Figure 5.4: Effect of pulse shaping on the probability of packet loss for a (24,10,3) 

convolutional code 

 

 

According to figure 5.4, a rectangular pulse will perform worse than all the 

others for short packets. This is due to the occurrence of consecutive 1s or 0s in the 

transmitted sequence. For a square pulse, identical consecutive symbols will result in a 

straight line at the output of the matched filter as shown in figure 5.5. When corrupted 

by noise, it is possible for incorrect sampling times to get additive constructive noise that 

will result in a higher energy than the correct sampling time. However, identical 
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consecutive symbols on a triangular pulse will have a dip between them as shown in 

figure 5.6 thus minimizing the chances of an incorrect sampling time rising above the 

correct one. On the other hand, this problem does not occur for a long packet because the 

event described above will not affect the overall energy of the much longer packet. 

However, a triangular pulse or a delta function will have a wider bandwidth compared to 

the square pulse. In the remaining sections of this paper, a triangular pulse was used in 

all simulations since the delta function has an infinite bandwidth that will not fit inside a 

passband. 

 

 

Figure 5.5: Matched filter output for a square pulse 

 



 

64 

 

 

Figure 5.6: Matched filter output for a triangular pulse 

 

 

Theoretical Approximation 

In order to verify these simulation results, we would like to set up a theoretical 

model that can match and predict the PSCE as much as possible. Finding an exact 

expression for the PSCE can be difficult due to the dependence between the sliding 

windows that share multiple common samples. Thus, we will settle for a close 

approximation. There are two key assumptions here. First, let us assume that we are 

working at one sample per symbol. Second, when we find the coarse estimate of the time 

delay 𝑡0̂, the smaller window of size 𝑚𝑛 is large enough to encompass all the samples of 

𝑟[𝑡] that are found in window that share common samples with 𝑆𝑡0. Therefore, we 

assume that the different random variables representing the energy 𝑆𝑡 are independent 

and share no common samples. This will result in 𝑀 different 𝑆𝑡 that are far and 

independent from each other. In simple terms, instead of using (𝑀 − 1)𝐾 random 
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variables to compute the PSCE, we will only use 𝑀 independent random variables. Let 

𝑍𝑖
(𝑡) be the ith sample in the sliding window at time 𝑡 out of 𝑀 possible windows, then: 

 𝑍𝑖
(𝑡) = 𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠] 𝑓𝑜𝑟 𝑡 = 0,1, … ,𝑀 − 1 (5.6) 

 𝑆𝑡 =∑|𝑍𝑖
(𝑡)|

2
𝑛−1

𝑖=0

 𝑓𝑜𝑟 𝑡 = 0,1, … ,𝑀 − 1 (5.7) 

In order to calculate the PSCE, we need to know the distribution of 𝑆𝑡 which can 

be determined by finding the distribution of |𝑍𝑖
(𝑡)|

2
. We know that |𝑍𝑖

(𝑡)|
2
 follows a 

Chi-Squared distribution but since 𝑆𝑡 is a sum of 𝑛 independent random variables, we 

can use the Central Limit Theorem to approximate it to a Gaussian random variable. In 

Appendix A, we show that for a BPSK signal: 

 𝐸 [|𝑍𝑖
(𝑡)|

2
] = {

𝜎2 + 1, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝜎2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.8) 

 𝑉𝑎𝑟 (|𝑍𝑖
(𝑡)|

2
) = {

𝜎4 + 2𝜎2, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝜎4, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.9) 

Therefore, 𝑆𝑡0~𝒩(𝑛(𝜎
2 + 1), 𝑛(𝜎4 + 𝜎2)) and 𝑆𝑡~𝒩(𝑛𝜎

2, 𝑛𝜎4) otherwise. From 

there, the probability of capturing the entire signal is approximated by: 

 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) ≈ 𝑃( ⋃ 𝑆𝑡0 ≥ 𝑆𝑡

𝑀−1

𝑡=0,𝑡≠𝑡0

) = 𝑃( ⋃ 𝑆𝑡 ≤ 𝑠

𝑀−1

𝑡=0,𝑡≠𝑡0

|𝑆𝑡0 = 𝑠) (5.10) 

 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) ≈ ∫ (1 − 𝑄 (
𝑠 − 𝑛𝜎2

√𝑛𝜎2
))

𝑀−1
1

√2𝜋𝑉𝑎𝑟(𝑆𝑡0)
𝑒

−(𝑠−𝐸[𝑆𝑡0])
2

2𝑉𝑎𝑟(𝑆𝑡0) 𝑑𝑠
∞

−∞

 (5.11) 

The PSCE can then be approximated by: 
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 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟) ≈ 1 − 𝑃(𝑐𝑎𝑝𝑡𝑢𝑟𝑒) (5.12) 

We tested this approximation of the PSCE and we found it to be very close the 

exact PSCE obtained from Monte Carlo simulations in the scenarios of interest. Figures 

5.7 and 5.8 show the comparison between the two for a rate 1/2 convolutional code. The 

larger and initial observation window was set to respectively 10 and 5 times the size of 

the signal while the smaller window was three times the size of the signal. Both cases 

show that the difference between the approximated PSCE and the actual PSCE is less 

than 0.5dB. This indicates that our theoretical model can sufficiently approximate the 

PSCE for relatively small uncertainty windows. However, when the uncertainty window 

is much larger, such as for 𝑀 = 100 or 𝑀 = 1000, the approximation errors become too 

large to neglect and the proposed model is no longer accurate. 

 

 

 

Figure 5.7: Probability of signal capture error with a window 10 times the signal 
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Figure 5.8: Probability of signal capture error with a window 5 times the signal 
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CHAPTER VI  

FRAME SYNCHRONIZATION FOR VERY SHORT PACKETS 

 

Problem Setup 

While coarse synchronization tries to get a rough estimate of where the signal 

begins, frame synchronization aims at finding the exact time delay. This makes frame 

synchronization more complicated than coarse synchronization as there is no room for 

error especially when very short packets are involved. If the estimated time delay is off 

from the correct time delay by even 1 sample, the entire decoded packet will be different 

from the transmitted packet and all the information will be lost. 

After both coarse and symbol synchronization stages are completed, we expect to 

have a small observation window, likely twice the size of the signal, that has been down-

sampled to where each sample represents only 1 symbol. The desired signal is 

somewhere inside this window at an unknown location and surrounded by random noise. 

Let 𝒔 be the vector containing the transmitted symbols, 𝒘 is a vector containing the 

noise samples, 𝑛 is the length of the signal in symbols, 𝑚 is the coefficient of the smaller 

observation window as indicated in the previous chapter, and 𝑡0 is the time delay that we 

are looking for. Figure 6.1 illustrates the described frame synchronization problem. 
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Figure 6.1: General received frame structure 

 

 

All the samples in figure 6.1 can be summarized in the vector 𝒓 containing all the 

received samples: 

 𝒓 = [0,0, … ,0, 𝑠0, 𝑠1, … , 𝑠𝑛−1, 0, … ,0] + [𝑤0, 𝑤1, … , 𝑤𝑚𝑛−1] (6.1) 

Assuming the entire signal was captured during coarse and symbol 

synchronization stages, the correct time delay 𝑡0 is equally likely to be somewhere 

between 0 and (𝑚 − 1)𝑛 − 1. We need to come up with a procedure to reliably find 𝑡0. 

If the information bits were encoded using an error-correction code at the transmitter, we 

propose a simple and straight forward synchronization algorithm that can achieve 

optimal if not perfect synchronization in multiple scenarios. 
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Decoder-Assisted Frame Synchronization 

Let us assume that 𝑘 information bits were encoded at the transmitter with an 

(𝑛, 𝑘) error-correction code where 𝑛 is then number of coded bits. This (𝑛, 𝑘) code may 

not necessarily be a standard block code but can be a convolutional or LDPC code. Such 

codes typically do not have a size limit and usually operate on an infinitely long stream 

of bits but since we are working with very short packets, we will treat them as block 

codes. The proposed frame synchronization algorithm consists of sliding a window 𝑪 

that has the same length 𝑛 as the transmitted code that will test the possibility of each 

time delay being the correct one. The window 𝑪 starts at 𝑟0 selecting the next 𝑛 samples 

and slides all the way to 𝑟(𝑚−1)𝑛−1 selecting the last 𝑛 samples in the observation 

window. Each time, we will evaluate a correlation metric and choose the time delay that 

maximizes this metric. This is done by following these steps for each possible time 

delay: 

- Step 1: De-interleave the 𝑛 coded bits in case interleaving was used. 

- Step 2: Decode the 𝑛 coded bits by following the decoding algorithm for the 

chosen (𝑛, 𝑘) code. 

- Step 3: Re-encode the resulting 𝑘 information bits according to the encoding 

algorithm for the (𝑛, 𝑘) code. 

- Step 4: Re-interleave the 𝑛 coded bits in case interleaving was used. 

- Step 5: Re-modulate the resulting 𝑛 coded bits according to the modulation 

scheme that was used at the transmitter. This will create a new window 𝑪′. 
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- Step 6: Calculate the correlation 𝜌𝑗 between the contents of 𝑪 and the contents of 

𝑪′ according to: 

 𝜌𝑗 = ∑𝐶𝑖

𝑛−1

𝑖=0

𝐶′𝑖 𝑓𝑜𝑟 𝑗 = 0,1, … , (𝑚 − 1)𝑛 − 1 (6.2) 

- Step 7: Choose the time delay that maximizes the correlation according to: 

 𝑡0 = argmax
𝑡=0,…,(𝑚−1)𝑛−1

𝜌𝑡 (6.3) 

The main idea behind this method is the when we are observing an incorrect time 

delay, if we decode and then re-encode the contents of this window, we will end up with 

an entirely different window that looks nothing like what we observed. However, if we 

are looking at the correct time delay, repeating this procedure will result in a window 

that is very similar to the one we are observing. 

Maximum Likelihood Frame Synchronization 

In order to test the reliability of the proposed frame synchronization algorithm, 

we need to compare it to an optimal Maximum a Posteriori (MAP) frame 

synchronization algorithm. But first we need to derive it. A MAP frame synchronization 

algorithm requires choosing the time delay that maximizes the posterior probability 

density function (pdf) 𝑓(𝑡|𝒓) for time delay 𝑡 given the received samples 𝒓 in equation 

(6.1). We start by applying the Bayes rule [46]: 

 

 𝑓(𝑡|𝒓) =
𝑓(𝒓|𝑡)𝑃(𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦)

𝑓(𝒓)
 (6.4) 
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Since we are assuming that each time delay is equally likely to be the correct 

one, maximizing 𝑓(𝒓|𝑡) is equivalent to maximizing 𝑓(𝑡|𝒓). The problem is then 

transformed from MAP to ML and 𝑓(𝒓|𝑡) can be expressed by: 

 𝑓(𝒓|𝑡) =∑ 𝑓(𝒓|𝑡, 𝒔)𝑃(𝒔 𝑤𝑎𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑)
𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝒔

 (6.5) 

where 𝒔 is one of the all possible modulated codewords and 𝑃(𝒔 𝑤𝑎𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑) =

1

2𝑘
 is the probability of uniformly choosing one codeword out of all possible 2𝑘 

codewords to transmit. Then, 𝑓(𝒓|𝑡, 𝒔) is expressed by: 

 𝑓(𝒓|𝑡, 𝒔) =
1

(√2𝜋𝜎2)
𝑚𝑛 𝑒

−∑ 𝑟′𝑖
2𝑚𝑛−1

𝑖=0
2𝜎2  (6.6) 

where: 

 𝑟′𝑖 = {
𝑟𝑖 − 𝑠𝑖−𝑡,   𝑓𝑜𝑟 𝑖 = 𝑡, 𝑡 + 1,… , 𝑡 + 𝑛 − 1

𝑟𝑖,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.7) 

This means that for each possible time delay 𝑡, we first evaluate the likelihood of 

𝒔 being the transmitted signal, we choose the most likely transmitted signal, and finally 

evaluate the likelihood of the contents of the observed window being a transmitted signal 

and the rest of the window being random noise. The correct time delay 𝑡0 is the one that 

maximizes this likelihood and is found by: 

𝑡0 = argmax
𝑡=0,…,(𝑚−1)𝑛−1

max
𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝒔

𝑓(𝒓|𝑡, 𝒔) (6.8) 
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Simulation 

Now we are ready to test our proposed algorithm and compare it with the optimal 

ML frame synchronization algorithm in addition to some of the existing methods in 

literature. In particular, the method described in [41] involves computing a log-

likelihood ratio (LLR) of the syndrome obtained from the parity check matrix of the 

code used during transmission. We tested this LLR frame synchronization algorithm on 

LDPC codes since it was designed for codes having a sparse parity check matrix and we 

believe it will be most effective in those scenarios. The parity check matrices for these 

codes were generated using the Progressive Edge Growth algorithm in [47]. Both our 

proposed algorithm and the ML algorithm derived above were tested on convolutional 

codes. 

In these simulations, 𝑘 information bits were randomly generated following a 

uniform distribution and then encoded to obtain 𝑛 coded bits that were modulated using 

a BPSK scheme. A random time delay 𝑡0 was uniformly generated between 0 and 

(𝑚 − 1)𝑛 − 1 where 𝑚 = 2. The coded and now modulated symbols where then placed 

inside a window of size 𝑚𝑛 at position 𝑡0 and Gaussian noise was added to simulate an 

AWGN channel. Then we run each one of the algorithms describe above to estimate 𝑡0. 

Once 𝑡0 is found, we extract the received signal and decode it. We then compare the 

resulting 𝑘 bits with the transmitted information bits and count the probability of error. If 

the decoded bits are different from the transmitted bits in at least 1 location, we declare 

that the entire packet is lost. We then count the number of times this event occurs and 

divide it by the number of times the packet was transmitted to estimate the probability of 



 

74 

 

packet loss using the Monte Carlo principle. We also experimented with different packet 

sizes to see how much do we have to increase the packet size by to reach perfect 

synchronization where the exact time delay is known. Figures 6.2-6.4 show the 

simulation for 10, 20, and 100 information bits respectively. 

 

 

 

Figure 6.2: Comparison of different frame synchronization algorithms for 10 

information bits 
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Figure 6.3: Comparison of different frame synchronization algorithms for 20 

information bits 

 

 

 

Figure 6.4: Comparison of different frame synchronization algorithms for 100 

information bits 
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As shown in figure 6.2, when the very short packet consisting of 10 information 

bits was transmitted, the LLR synchronization algorithm was found to be 2.75dB behind 

perfect synchronization. This significant loss is caused by the fact that when LDPC 

codes are used on very short packets, the parity check matrix will not be sparse. Since 

having a sparse parity check matrix is a requirement for the LLR synchronization 

algorithm, it is to be expected that this method is not effective on very short packets. 

Meanwhile, both the proposed and ML algorithm were only at a 1dB disadvantage from 

perfect synchronization. This indicates that the proposed algorithm is equivalent to the 

optimal ML synchronization algorithm in this scenario. In fact, whenever soft-decision 

decoding is used, the proposed algorithm will always be equivalent to the ML algorithm. 

When block codes are used, soft decision decoding requires searching through all 

possible 2𝑘 transmitted codewords to find the closest codeword in terms of Euclidean 

Distance much like the ML synchronization algorithm. When convolutional codes are 

used, the soft-decision Viterbi algorithm [48] finds the closest codeword without having 

to do an exhaustive search as described above. Hence, the proposed frame 

synchronization algorithm accompanied with soft-decision decoding produces the 

optimal probability of packet loss. 

When the packet size is increased to 20 information bits, the ML synchronization 

algorithm can no longer be applied as there is more than 1 million possible codewords. 

But the proposed decoder-assisted algorithm reached the performance under perfect 

synchronization while the LLR synchronization algorithm is still 2.25dB behind its 

targeted performance. When the packet size reaches 100 information bits, the LLR 
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synchronization algorithm begins to close in on its corresponding performance at perfect 

synchronization and is only 1 dB behind while the proposed algorithm matches the 

performance of its targeted perfect synchronization almost perfectly. Another interesting 

conclusion that can be drawn from figures 6.2-6.4 is that for very short packets, 

convolutional codes are superior to LDPC codes but when the packet size grows, LDPC 

code will catch up and overtake convolutional codes. This is demonstrated by the 

performance under perfect synchronization for both coding schemes. Finally, a direct 

comparison between the proposed algorithm and the LLR synchronization algorithm on 

an (20,10) LDPC code is shown in figure 6.5 and indicates that the decoder-assisted 

synchronization algorithm is still closer to the performance under perfect 

synchronization than the algorithm in [41]. 

 

 

Figure 6.5: Comparison of different frame synchronization algorithms on a (20,10) 

LDPC code 
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Effect of Coding Scheme 

Since we are taking advantage of the presence of error-correction codes to 

perform synchronization, our choice of coding scheme and decoding algorithm will 

affect the overall performance. Therefore, we need to carefully decide how are we going 

to encode and decode the transmitted packet. We demonstrated earlier that when soft-

decision decoding is used for synchronization, it is equivalent to the optimal ML frame 

synchronizer and we see no point in settling for suboptimal performance using hard 

decision decoding. Now we just need to find the best coding scheme to reliably transmit 

and decode a very small and fixed number of bits. 

For such a short packet, the candidates for best coding schemes are block codes, 

convolutional codes, LDPC codes, and turbo codes. The latter coding scheme requires 

very large packets in order for its interleaver to take full effect and it is hence eliminated. 

Block codes such as Hamming, Golay, BCH, and Reed-Solomon can work well on short 

packets but they do not have an efficient soft-decision decoding algorithm. Their hard-

decision decoding algorithms are suboptimal and their soft-decision decoding algorithms 

require an exhaustive search over 2𝑘 possible transmitted codewords. This search will 

have to be repeated 2(𝑚 − 1)𝑛 times to account for each possible time delay and phase 

ambiguity resolution, as will be shown later. Therefore, it is not desirable to use block 

codes since they require the decoding algorithm to run 2𝑘+1(𝑚 − 1)𝑛 times. As for 

LDPC codes, they were designed to have a low density parity check matrix where 0s 

massively outnumber 1s in the matrix. This will not be the case for short packets in order 

to satisfy the parity check requirements. By elimination, we believe that convolutional 
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codes are the best to use in this scenario as they check all the boxes when it comes to 

having an efficient soft decision decoding algorithm, not having any requirements over 

the packet size or the parity check matrix. 

We ran a few simulations to test the validity of this claim. We generated 12 

information bits and encoded them using a (24,12) Golay code, a (24,12) LDPC code, 

and a (28,12,3) convolutional code. As illustrated in figure 6.6, the convolutional code 

clearly outperforms both the Golay and LDPC code. 

 

 

 

Figure 6.6: Comparison of different codes for 12 information bits 

 

 

One of the major advantages of convolutional codes is that, unlike block codes, 

we do not have restrictions on the block size or the error-correction capability. So we 

can tune convolutional codes to achieve a desired probability of packet loss while still 
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fixing the number of information bits. If our ultimate goal was to transmit 𝑘 information 

bits at a given SNR and a probability of error that does not exceed a given upper limit, 

we can experiment with the code rate and the constraint length of the convolutional code 

to find the best option as will be shown later. 

Phase Synchronization and Ambiguity Resolution 

The proposed frame synchronization algorithm can also be used to help with 

phase synchronization and ambiguity resolution because a codeword that had it bits 

flipped is likely not going to be valid codeword and hence the frame synchronization 

algorithm can tell us whether our phase estimate is correct. 

Let us assume that the channel induced an unknown phase offset denoted by 𝜃. 

After both coarse and symbol synchronization, we will end up with a received vector 𝒓 

whose sampled can be expressed by: 

 𝑟𝑡 = {
𝑠𝑡−𝑡0𝑒

𝑖𝜃 + 𝑤𝑡, 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑛 − 1

𝑤𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.9) 

where 𝑤𝑡 is a Gaussian noise sample and 𝑖 = √−1. The phase offset 𝜃 can be first 

estimated by: 

 𝜃 =  𝑎𝑛𝑔𝑙𝑒 (√
1

𝑚𝑛
∑ 𝑟𝑗2
𝑚𝑛−1

𝑗=0

) (6.10) 

However, there is still 180˚ ambiguity since the signal constellation was either 

rotated by 𝜃 in the counter clockwise direction or by 𝜃 + 𝜋. This is where Hypothesis 
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Testing can be used to solve this ambiguity. Let ℋ0 be the hypothesis that signal was 

rotated by 𝜃 and ℋ1 be the hypothesis that the signal was rotated by 𝜃 + 𝜋. 

We can test each hypothesis by rotating the received samples by 𝜃 and running 

the frame synchronization algorithm to find the maximum correlation 𝜌𝑡0|ℋ0 , then we 

can rotate the samples by 𝜃 + 𝜋 and run the frame synchronization algorithm again to 

find the maximum correlation 𝜌𝑡0|ℋ1 . The phase offset will be decided by: 

 𝜃 = {
𝜃, 𝑖𝑓 𝜌𝑡0|ℋ0 > 𝜌𝑡0|ℋ1

 𝜃 + 𝜋, 𝑖𝑓 𝜌𝑡0|ℋ0 < 𝜌𝑡0|ℋ1
 (6.11) 
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CHAPTER VII  

THEORETICAL APPROXIMATION FOR THE PROBABILITY OF 

SYNCHRONIZATION ERROR 

 

In this chapter, we propose a theoretical model to approximate the probability of 

synchronization error (PSE) for the decoder-assisted frame synchronization algorithm on 

very short packets. This model is primarily used to support the simulation results shown 

previously and provide a guideline to finding the PSE for high SNR situations that 

require extremely long Monte Carlo simulations. Deriving the exact expression of the 

PSE for a convolutional, block, and LDPC code can be difficult so we will primarily use 

a random code in this model since the coded bits are independent and we will rely on 

some approximations and estimations to find a tight upper bound on the PSE. 

Expressing the Probability of Synchronization Error 

The decoder-assisted frame synchronization for a signal encoded using a random 

code follows these steps: 

- Step 1: A sliding window having the same size as the codeword is moved across 

the received window to test every possible time delay. 

- Step 2: For every time delay, the content of the window is correlated with every 

codeword in the codebook. 

- Step 3: The codeword with the highest correlation with the content of the 

window is recorded. 
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- Step 4: The time delay with the highest correlation calculated from the previous 

step is chosen as the correct time delay. 

The PSE is the probability that the chosen time delay is different from the correct 

time delay and is expressed by: 

 𝑃𝑟(𝑠𝑦𝑛𝑐 𝑒𝑟𝑟𝑜𝑟) = 𝑃𝑟( ⋃ 𝑍𝑡0 < 𝑍𝑖

𝑀

𝑖=1,𝑖≠𝑡0

) ≤ ∑ 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖)

𝑀

𝑖=1,𝑖≠𝑡0

 (7.1) 

where 𝑍𝑡0 represents the maximum correlation at the correct time delay, 𝑍𝑖 is the 

maximum correlation at the ith incorrect time delay, and 𝑀 is the total number of 

possible time delays. 

The Union Bound is used in equation (7.1) to provide an upper bound to the 

exact PSE because the exact expression is difficult to obtain since the different 𝑍𝑖 are not 

independent random variables. In order to evaluate this probability, we need to find the 

distributions of 𝑍𝑡0 and all the different 𝑍𝑖. 

Let 𝑛 be the number of coded bits in the (𝑛, 𝑘) random code and 𝜎2 be the noise 

variance that is inversely proportional to the SNR. We can safely assume that 𝑍𝑡0 is a 

Gaussian random variable with parameters 𝒩(𝑛, 𝑛𝜎2). This assumption is accurate 

because at the correct time delay, the correct transmitted codeword in the random 

codebook will achieve the highest correlation with the contents of the observed window 

almost all the time. The top histogram representing the samples of 𝑍𝑡0 in figure 7.1 

verifies this assumption. Meanwhile, the distribution of 𝑍𝑖 is unknown because it 

represents the maximum of correlated Gaussian random variables whose covariance 
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matrix is not full rank. A mathematical model for such a distribution does not exist but 

we can find an empirical one. The bottom two histograms in figure 7.1 show this 

distribution when the observation window contains a partial and incomplete signal and 

when it contains noise samples only. A direct observation of these two histograms 

indicate that the distribution of 𝑍𝑖 resembles a Gamma distribution [49] whose 

parameters need to determined or at least approximated. 

 

 

 

Figure 7.1: Metric distribution at various time delays for a (20,10) random code 

 

 

Now that we have an idea about the distributions of the maximum correlation at 

the correct an incorrect time delays. We can further express the probability that the 
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maximum correlation at ith incorrect time delay is greater than the maximum correlation 

at the correct time delay. 

 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖) = ∫ 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧)𝑓𝑍𝑡0
(𝑧)𝑑𝑧

∞

−∞

 (7.2) 

 𝑃𝑟(𝑍𝑡0 < 𝑍𝑖) = ∫ 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧)𝑓𝑍𝑡0
(𝑧)𝑑𝑧

∞

0

+∫ 𝑓𝑍𝑡0
(𝑧)𝑑𝑧

0

−∞

 (7.3) 

where 𝑓𝑍𝑡0
(𝑧) is the pdf of 𝑍𝑡0. Since 𝑍𝑖 is assumed to have a Gamma distribution, the 

first integral in (7.3) starts from 0 because a Gamma random variable is always positive. 

However, when 𝑧 is negative, we get 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) = 1. The next step is to 

approximate the shape 𝛼 and rate 𝛽 for a Gamma distribution whose pdf is expressed by: 

 𝑓(𝑥) =
𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 (7.4) 

where 𝛤(𝑥) is the Gamma function: 

 𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

 (7.5) 

In the probability 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧), a Gamma random variable is being 

conditioned on a Gaussian random which means we need to find the shape and rate of a 

conditional Gamma random variable. To make things simpler, we will approximate 𝑍𝑖 

and 𝑍𝑡0 as jointly Gaussian. Based on that approximation, we can find the conditional 

mean 𝜇𝑍𝑖|𝑍𝑡0  and variance 𝜎𝑍𝑖|𝑍𝑡0
2 of 𝑍𝑖 conditioned on 𝑍𝑡0 and deduce the shape and 

rate of 𝑍𝑖. The next set of equations will demonstrate this procedure: 

 𝜇𝑍𝑖|𝑍𝑡0 = 𝜇𝑍𝑖 +
𝜎𝑍𝑖
𝜎𝑍𝑡0

. 𝜌𝑍𝑖,𝑍𝑡0 . (𝑧 − 𝜇𝑍𝑡0) (7.6) 
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 𝜎𝑍𝑖|𝑍𝑡0
2 = (1 − 𝜌𝑍𝑖,𝑍𝑡0

2) . 𝜎𝑍𝑖
2 (7.7) 

 𝛽 =
𝜇𝑍𝑖|𝑍𝑡0
𝜎𝑍𝑖|𝑍𝑡0

2
 (7.8) 

 𝛼 = 𝛽. 𝜇𝑍𝑖|𝑍𝑡0  (7.9) 

where 𝜌𝑍𝑖,𝑍𝑡0 is the correlation coefficient between 𝑍𝑖 and 𝑍𝑡0. 

As a precaution for the rare event when 𝜇𝑍𝑖|𝑍𝑡0  is not positive, we will set it to a 

very small number close to 0 because 𝛼 and 𝛽 must be strictly positive. Now we can 

proceed to express 𝑃𝑟(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) using the Gamma Function 𝛤(𝑥) and the Upper 

Incomplete Gamma Function 𝛤(𝑥, 𝑦): 

 𝑃(𝑍𝑖 > 𝑧|𝑍𝑡0 = 𝑧) =
𝛤(𝛼, 𝛽𝑧)

𝛤(𝛼)
 (7.10) 

 𝛤(𝑥, 𝑦) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

𝑦

 (7.11) 

The only missing ingredients to evaluate the PSE are 𝜇𝑍𝑖, 𝜎𝑍𝑖
2, and 𝜌𝑍𝑖,𝑍𝑡0  that 

are respectively the mean of 𝑍𝑖, the variance of 𝑍𝑖, and the correlation coefficient 

between 𝑍𝑖 and 𝑍𝑡0. The next section will demonstrate how they can be found if possible 

or approximated. 

Approximating the Unknown Parameters 

At the ith incorrect time delay, the maximum correlation is 𝑍𝑖 = max (𝑋1, … , 𝑋𝑁) 

where 𝑁 = 2𝑘 and 𝑘 is the number of information bits in the (𝑛, 𝑘) random code and 𝑋𝑗 

is the correlation between the observed window and the jth codeword in the random 
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codebook. We need to separate between the cases where the observed window contains 

noise sample only and the case where a partial signal is observed. 

Noise Only Windows 

If we are observing a window that contains noise samples and correlate it with 

every codeword in the codebook to obtain 𝑋𝑗. We will find that 𝑋𝑗 are correlated and 

identically distributed Gaussian random variables with zero mean and variance 𝑛𝜎2. The 

correlation coefficient between 𝑋𝑖 and 𝑋𝑗 is: 

 𝜌𝑋𝑖,𝑋𝑗 =
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (7.12) 

where 𝑐𝑝
(𝑖)

 is the pth symbol in the ith codeword in the random codebook. The proof of 

(7.12) is found in Appendix B. All values of 𝜌𝑋𝑖,𝑋𝑗 need to be computed and stored in a 

2𝑘 × 2𝑘 matrix of correlation coefficients 𝑹. 

Upon careful observation of the contents 𝑹, its seems to have repeating values. 

The smaller correlation coefficients are more frequent than the larger ones. Therefore, 

one possible approximation to find 𝜇𝑍𝑖 and 𝜎𝑍𝑖
2 is to assume that 𝑋𝑗 are equally 

correlated with the same correlation coefficient 𝜌. This coefficient can be found by 

taking the average of the absolute value of all non-diagonal entries of 𝑹. A very similar 

result can be obtained by the median or the 𝐿2 average instead of the 𝐿1 average. It was 

demonstrated in [50] that the mean and variance of the maximum of equally correlated 

Gaussian random variables are related to the mean and variance of the maximum of 

independent and identically distributed (IID) Gaussian random variables. 
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For the IID case, the mean 𝜇𝑍𝑖,𝑖𝑖𝑑 and variance 𝜎𝑍𝑖,𝑖𝑖𝑑
2 of the maximum are: 

 𝜇𝑍𝑖,𝑖𝑖𝑑 = ∫
𝑁

√2𝜋
√𝑛𝜎2𝑡𝑒

−𝑡2

2 (1 − 𝑄(𝑡))𝑁−1𝑑𝑡
∞

−∞

 (7.13) 

 𝜎𝑍𝑖,𝑖𝑑𝑑
2 = ∫

𝑁

√2𝜋
√𝑛𝜎2𝑡2𝑒

−𝑡2

2 (1 − 𝑄(𝑡))𝑁−1𝑑𝑡 −
∞

−∞

𝜇𝑍𝑖,𝑖𝑖𝑑
2 (7.14) 

where 𝑄(𝑥) is the Q-function defined by: 

 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒

−𝑡2

2 𝑑𝑡
∞

𝑥

 (7.15) 

From there 𝜇𝑍𝑖 and 𝜎𝑍𝑖
2 are found as in [50]: 

 𝜇𝑍𝑖 ≈ √1 − 𝜌𝜇𝑍𝑖,𝑖𝑑𝑑 (7.16) 

 𝜎𝑍𝑖
2 ≈ 𝜌 + (1 − 𝜌)𝜎𝑍𝑖,𝑖𝑖𝑑

2 (7.17) 

Since there are no common samples between the noise only window and the window at 

the correct time delay, the correlation coefficient is easily found by: 

 𝜌𝑍𝑖,𝑍𝑡0 = 0 (7.18) 

 

Windows with Partial Signal 

If the observed window now contains some samples of the transmitted signal, the 

correlations 𝑋𝑗 between the window and every codeword in the codebook are correlated 

and differently distributed Gaussian random variables with different means and an equal 

variance 𝑛𝜎2. Let us define 𝑛𝑏 to be the number of symbols present in the observed 

window and 𝑖𝑐 to be the index of the chosen codeword that was transmitted from within 

the random codebook. Let 𝑑 = 𝑛 − 𝑛𝑏 + 1. Then, the mean of 𝑋𝑗 is: 
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 𝜇𝑋𝑗 =

{
 
 

 
 
∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

, if the beginning of the signal is observed 

∑𝑐𝑖
(𝑖𝑐)𝑐𝑖−𝑑+1

(𝑗)

𝑛

𝑖=𝑑

, if the end of the signal is observed

 (7.19) 

The correlation between the different 𝑋𝑗 are calculated using the same expression 

for the noise only case in (7.12). Meanwhile the correlation coefficient between 𝑍𝑡0 and 

𝑋𝑗 is calculated by: 

 𝜌𝑍𝑡0 ,𝑋𝑗 =
1

𝑛
𝜇𝑋𝑗 (7.20) 

 

The correlation coefficients in (7.20) will be useful when calculating 𝜌𝑍𝑖,𝑍𝑡0 . The proof 

of (7.20) can be found in Appendix B. 

In order to estimate 𝜇𝑍𝑖, 𝜎𝑍𝑖
2, and 𝜌𝑍𝑖,𝑍𝑡0for windows with partial signal, it is 

necessary to distinguish between cases where the code rate is low and where the code 

rate is high. When the code rate is low, 𝑋𝑗 can be treated as independent and differently 

distributed Gaussian random variables. When the code rate is high, 𝑋𝑗 are correlated and 

differently distributed Gaussian random variables. We will treat any code rate less than 

1/5 as low and any code rate greater than 1/5 as high. 

Low Code Rate 

Since 𝑋𝑗 are weakly correlated and almost independent for low code rates, we 

can simply obtain the mean and variance of 𝑍𝑖 by integrating the pdf of 𝑍𝑖. Let 𝑓𝑋𝑗(𝑥) 

and 𝐹𝑋𝑗(𝑥) be the respective pdf and CDF of 𝑋𝑗: 
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 𝑓𝑋𝑗(𝑥) =
1

√2𝜋𝑛𝜎2
𝑒
−
(𝑥−𝜇𝑋𝑗)

2

2𝑛𝜎2  (7.21) 

 𝐹𝑋𝑗(𝑥) = 1 − 𝑄 (
𝑥 − 𝜇𝑋𝑗

√𝑛𝜎2
) (7.22) 

Then for 𝑍𝑖 = max (𝑋1, … , 𝑋𝑁): 

 𝑓𝑍𝑖(𝑧) =∑𝑓𝑋𝑗(𝑧) ∏ 𝐹𝑋𝑞(𝑧)

𝑁

𝑞=1,𝑞≠𝑗

𝑁

𝑗=1

 (7.23) 

 𝜇𝑍𝑖 = ∫ 𝑧𝑓𝑍𝑖(𝑧)𝑑𝑧
∞

−∞

 (7.24) 

 𝜎𝑍𝑖
2 = ∫ 𝑧2𝑓𝑍𝑖(𝑧)𝑑𝑧

∞

−∞

− 𝜇𝑍𝑖
2 (7.25) 

In order to find 𝜌𝑍𝑖,𝑍𝑡0 , we propose using a sequential maximization algorithm. 

This algorithm treats the maximum of two Gaussian random variables as another 

Gaussian random variable and was initially proposed in [51]. This algorithm works in 

the following manner and is explained in details in Appendix C: 

- Compute the mean and variance of max (𝑋1, 𝑋2). 

- Approximate the correlation coefficient 𝜌𝑋3,max(𝑋1,𝑋2). 

- Approximate the mean and variance of max(𝑋3,max(𝑋1, 𝑋2)). 

- Approximate the correlation coefficient 𝜌𝑋4,max(𝑋1,𝑋2𝑋3,). 

- Continue the same procedure until approximating the mean and variance of 

max(𝑋𝑁, max(𝑋1, … , 𝑋𝑁−1)). 

- Add the random variable 𝑍𝑡0 to the set 𝑋1, … , 𝑋𝑁 and approximate the correlation 

coefficient 𝜌max(𝑋1,…,𝑋𝑁),𝑍𝑡0 . 
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High Code Rate 

In this case, we will use a pairwise maximization algorithm proposed in [52] to 

approximate and the mean and variance of 𝑍𝑖. This algorithm divides the set of random 

variables into pairs and treats the maximum of two Gaussian random variables as 

another Gaussian random variable. This algorithm works in the following manner: 

- Compute the mean and variance of max (𝑋1, 𝑋2), 

max (𝑋3, 𝑋4),…, max (𝑋𝑁−1, 𝑋𝑁). 

- Approximate the correlation coefficients 𝜌max(𝑋1,𝑋2),max(𝑋3,𝑋4),…, 

𝜌max(𝑋𝑁−3,𝑋𝑁−2),max(𝑋𝑁−1,𝑋𝑁). 

- Approximate the mean and variance of 

max(max(𝑋1, 𝑋2) , max(𝑋3, 𝑋4)) , … ,max(max(𝑋𝑁−3, 𝑋𝑁−2) ,max(𝑋𝑁−1, 𝑋𝑁)). 

- Continue the same procedure until approximating the mean and variance of 

max(𝑋1, … , 𝑋𝑁). 

This algorithm is explained in detail in Appendix D. The correlation coefficient 

𝜌𝑍𝑖,𝑍𝑡0  is approximated using the same procedure as for the low code rate. 

 

Simulation 

The entire procedure for approximating the PSE using the Union Bound was 

implemented and compared with the actual PSE obtained from Monte Carlo simulations 

in addition to the approximate PSE where the different parameters were obtained from 

Monte Carlo simulations instead of running the algorithms described above. We 
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experimented with different packet sizes and different codes rates and it can be seen in 

figure 7.2-7.10 that for relatively high SNRs of interest, the PSE obtained from the 

Union Bound is less than 1dB away from the actual PSE. 

 

 

Figure 7.2: Frame synchronization for a random code (20,10) 
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Figure 7.3: Frame synchronization for a random code (21,7) 

 

 

 

Figure 7.4: Frame synchronization for a random code (40,8) 
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Figure 7.5: Frame synchronization for a random code (42,7) 

 

 

 

Figure 7.6: Frame synchronization for a random code (24,6) 
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Figure 7.7: Frame synchronization for a random code (10,5) 

 

 

 

Figure 7.8: Frame synchronization for a random code (50,5) 
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Figure 7.9: Frame synchronization for a random code (48,6) 

 

 

 

Figure 7.10: Frame synchronization for a random code (27,9) 
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CHAPTER VIII  

EFFECT OF DIFFERENT PARAMETERS ON PERFORMANCE FOR THE LOW 

DATA RATE COMMUNICATION SYSTEM 

 

Finally, we combined all of the synchronization stages to see the effect of 

propagating errors on the overall performance of the communication system. The 

performance is measured in terms of the probability of packet loss where 10 information 

bits are transmitted in these simulations. 

Effect of Code Parameters 

We experimented with different convolutional codes by changing the desired 

code rate and the constraint length each time to find the best possible code to use in this 

scenario. Figures 8.1-8.3 show the results of these simulations. For each desired code 

rate there is a minimal difference in performance between the different constraint 

lengths. This indicates that most of the losses are due to synchronization errors rather 

than the error-correction capability of the codes. It can also be seen that the codes with a 

desired rate of 1/2 outperform those with a desired rate of 1/3 or 1/4 by a small margin. 

This is due to the fact that lowering the code rate reduces the energy per symbol and thus 

increasing the chances of not capturing the entire signal in the window during coarse 

synchronization. In the end, the (30,10,6) convolutional code that has a desired rate of 

1/2, a constraint length of 6, and an effective rate of 1/3 gave the best performance 

among these scenarios by a very small margin. 
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Figure 8.1: Probability of packet loss for rate 1/2 convolutional codes in the 

presence of synchronization errors (k=10) 

 

 

 

Figure 8.2: Probability of packet loss for rate 1/3 convolutional codes in the 

presence of synchronization errors (k=10) 
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Figure 8.3: Probability of packet loss for rate 1/4 convolutional codes in the 

presence of synchronization errors (k=10) 

 

 

However, if we repeat the same exercise with perfect synchronization, we will 

find that a (42,10,5) convolutional code achieved the best performance in terms of 

probability of packet loss. The conclusion is, when it comes to short packets, 

synchronization must be taken into account while designing the communication system 

and the signal parameters that guarantee the best performance under perfect 

synchronization are not necessarily the same under synchronization errors. The results 

for perfect synchronization are shown in figures 8.4-8.6. 
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Figure 8.4: Probability of packet loss for rate 1/2 convolutional codes with perfect 

synchronization (k=10) 

 

 

 

Figure 8.5: Probability of packet loss for rate 1/3 convolutional codes with perfect 

synchronization (k=10) 
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Figure 8.6: Probability of packet loss for rate 1/4 convolutional codes with perfect 

synchronization (k=10) 

 

 

Effect of the Smaller Uncertainty Window Size 

Next, we wanted to see the effect of the smaller uncertainty window size on the 

overall performance so we ran the simulations for different window coefficients while 

the initial window coefficient is 𝑀 = 20. Figure 8.7 shows that a window that is twice 

the size of the transmitted signal is the best option in this scenario. These results indicate 

that when the window is too small, we are less likely to capture the entire signal at the 

coarse and symbol synchronization stage. But in case we do, we have a better chance of 

performing the phase and frame synchronization correctly as there is less noise in the 

window and vice versa for when the window is too large. Therefore, the window needs 

to have a moderate size. 
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Figure 8.7: Effect of window size on the probability of packet loss for a (30,10,6) 

convolutional code 

 

 

Effect of Imperfect Synchronization and Propagating Errors 

We wanted to investigate the source of the major losses when all synchronization 

stages were combined together and whether that is the best possible performance we can 

get. We ran a few simulations showing how losses increase with the addition of each 

synchronization stage. We start with perfect synchronization where the exact time delay 

and phase offset are known, then we implement each synchronization stage one by one 

as described previously and combine them to see the losses when synchronization is 

imperfect. The results are illustrated in figure 8.8. In these simulations, 𝑀 = 20, 𝑚 = 2, 

and the chosen code is a (30,10,6) convolutional code. 
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Figure 8.8: Effect of imperfect synchronization on the probability of packet loss for 

a (30,10,6) convolutional code 

 

 

Table 8.1 summarizes the results of figure 8.8 and shows the losses from perfect 

synchronization after the imperfect implementation of each synchronization stage when 

using a (30,10,6) convolutional code at a 0.2% probability of packet loss. 
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Table 8.1: Summary of losses due to the imperfect implementation of each 

synchronization stage 

Imperfect implementation of: 

Approximate loss from perfect 

synchronization at 0.2% probability of 

packet loss (dB) 

Phase Synchronization 0.3 

Frame Synchronization 0.35 

Phase and Frame Synchronization 0.5 

Coarse, Symbol, and Frame 

Synchronization 

1.3 

Coarse, Symbol, Phase, and Frame 

Synchronization 

1.35 

 

 

From what we can see in figure 8.8 and table 8.1, frame and phase 

synchronization have a much smaller impact on the degradation of performance 

compared to coarse and symbol synchronization after the implementation of the 

proposed frame synchronization algorithm. The frame synchronization algorithm we 

developed was proven to reach the best possible performance under soft-decision 

decoding. Meanwhile, coarse and symbol synchronization can be problematic as they 

precede frame synchronization and their losses will propagate to the next stages. If the 

entire signal was not captured during coarse synchronization, the remaining steps will all 

have to make decisions based on the wrong input. If the correct sampling time was not 
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chosen during symbol synchronization, the signal that will be forwarded to the frame 

synchronizer will be weaker than it should be which will diminish our chances of 

decoding the word correctly. 

Effect of Pilot Symbols 

We investigated the use of pilot symbols and whether they can help us in closing 

the gap between the current performance and perfect performance. Adding pilot symbols 

require making small changes to the synchronization algorithms previously described. At 

the coarse and symbol synchronization stages, the procedure is the same but 𝑆𝑡 is now 

defined by: 

 
𝑆𝑡 = ∑ |𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]|

2
𝑛+𝐿−1

𝑖=0

+∑𝑟[𝑡 + 𝑖𝑁𝑠𝑝𝑠]𝑝𝑖

𝐿−1

𝑖=0

 𝑓𝑜𝑟 𝑡

= 0,1, … , (𝑀 − 1)𝐾 − 1 

(8.1) 

where 𝐿 is the number of pilot bits and 𝑝𝑖 is the ith sample in the pilot sequence. The 

phase estimation procedure remains the same and the pilot symbols are incorporated in 

the frame synchronization algorithm to resolve the ambiguity. 

At the frame synchronization stage, a sliding window 𝑪 of length 𝑛 + 𝐿 slides 

across the smaller uncertainty window of size 𝑚(𝑛 + 𝐿) all the way to the last possible 

time delay and evaluates a correlation metric for each time delay by following these 

steps: 

- Step 1: Strip the first 𝐿 bits that are supposed to be the pilot symbols. 

- Step 2: De-interleave the remaining 𝑛 bits inside the sliding window in case 

interleaving was used. 



 

106 

 

- Step 3: Decode those 𝑛 bits by following the decoding algorithm for the chosen 

(𝑛, 𝑘) code. 

- Step 4: Re-encode the resulting 𝑘 information bits according to the encoding 

algorithm for the (𝑛, 𝑘) code. 

- Step 5: Re-interleave the 𝑛 coded bits in case interleaving was used. 

- Step 6: Attach the known pilot bits ahead of the newly found 𝑛 coded bits. 

- Step 7: Re-modulate the resulting 𝑛 + 𝐿 bits according to the modulation scheme 

that was used at the transmitter. This will create a new window 𝑪′. 

- Step 8: Calculate the correlation 𝜌𝑗 at the jth time delay between the contents of 

𝑪 and the contents of 𝑪′ according to: 

 𝜌𝑗 =∑𝐶𝑖

𝑛−1

𝑖=0

𝐶′𝑖 𝑓𝑜𝑟 𝑗 = 0,1, … , (𝑚 − 1)(𝑛 + 𝐿) − 1 (8.2) 

- Step 9: Choose the time delay that maximizes the correlation according to: 

 𝑡0 = argmax
𝑡=0,…,(𝑚−1)(𝑛+𝑙)−1

𝜌𝑡 (8.3) 

We experimented with different numbers of pilot bits attached to the beginning 

of the signal and ran the simulations to see the change in performance. Figure 8.9 shows 

that pilot symbols did not improve the performance but made it worse. This is because 

the cost of adding the extra pilot bits outweighs any gain we can achieve in performance. 

In order for a pilot sequence to be effective in synchronization, it needs to be long and 

unique that it can be easily detected but also much shorter compared to the information 

portion of the signal. Since the packet is very short (10 information bits), the pilot 

sequence might end up being as long as the packet itself which causes a significant waste 
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of energy. On the contrary, if the packet was 1000 bits long, a pilot sequence that is 100 

bits long can be easily detected and has a negligible size compared to the data. Hence, 

we can reliably perform synchronization at a minimum cost of overhead. 

 

 

Figure 8.9: Effect of pilot symbols on the probability of packet loss for a (30,10,6) 

convolutional code 

 

 

Potential Improvement 

Now, we want to know how far are we from the best achievable performance in 

this scenario. We tested a coarse and symbol synchronization algorithm that we call “one 

step above optimal” in performance. In this algorithm, we assumed that we know exactly 

what the transmitted sequence is so at the coarse synchronization stage, we compute a 

cross-correlation between the transmitted sequence and the received signal and then 

choose the time delay that returned the highest correlation as a rough estimate of the true 
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time delay. Then for each sampling time we computed the cross-correlation of the 

transmitted sequence with the samples of the matched filter output and chose the 

sampling time that maximizes this correlation. 

We ran the simulation for that algorithm and the results are shown in figure 8.10 

for the (30,10,6) convolutional code. It can be seen that with a “genie aided” coarse and 

symbol synchronization algorithm, there is a 0.5dB loss from perfect synchronization 

where the exact time delay and phase offset are known. There is also less than 0.5dB 

difference between the current decoder-assisted synchronization and the genie aided 

coarse and symbol synchronization. The optimal coarse and symbol synchronizer would 

be somewhere in between those two so any improvement we can make will not gain 

more than 0.5dB. The optimal coarse and symbol synchronizer will have to compute the 

cross-correlation between every possible transmitted codeword and the received signal. 

Then, it will pick the time delay and the sampling time with the highest correlation in 

both cases. 
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Figure 8.10: Comparison of the decoder-assisted synchronization with the above 

optimal synchronization 

 

 

Application to the Pipe Strings Channel 

After we optimized the different parameters of the signal to find best 

performance under an AWGN channel, we put the resulting signaling format through the 

pipe strings and used the proposed synchronization procedure to see the difference in 

performance. As we noted previously, the pipe strings have frequency selective 

properties and can cause ISI. So we need to test the effect of different parameters on 

performance. 

Effect of Measurement Location 

As it was indicated previously, when the received signal is measured at the 

beginning or the end of the pipe segment, the channel response in figure 2.8 is somewhat 

flat. But if the signal was measured in the middle of the pipe segment, the channel 
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response in figure 2.9 is slanted and can offer a significant boost to the signal. We put 

that theory to the test and simulated the transmitted signal that was designed to improve 

synchronization. The signal, shown in figure 8.11, was recorded at the end and in the 

middle of the 10th pipe segment in a total of 100 pipe segments. 

 

 

Figure 8.11: Transmitted signal in time and frequency domains 

 

 

The second passband (796-994 Hz) in figure 2.9 was used for transmission in 

both cases since it offered the highest channel gain when the signal was recorded in the 

middle. The carrier frequency was set to 900Hz near the center of the passband. As 

shown in figure 8.12, recording the signal in the middle of the pipe segment offers a 

significant improvement and boosts the power of the signal for better synchronization 

and detection. The channel gain at the chosen carrier frequency was 2dB which is why it 
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outperforms the AWGN channel. However, the amount of ISI from dispersion and all 

the reflections will reduce the gain. For the next simulations, all the measurements will 

be performed in the middle of the pipe segments. 

 

 

Figure 8.12: Effect of the measurement location on the probability of packet loss 

for a (30,10,5) convolutional code using decoder-assisted synchronization 

 

 

Effect of the Bit Rate 

The different reflections coming from the joints at the beginning and end of the 

pipe strings can cause ISI when they arrive at the measurement location before the end 

of the original copy of the signal. This distortion can be limited by simply increasing the 

bit rate. Increasing the bit rate makes the signal shorter in the time domain. Since the 

arrival time of the reflections depends only on the measurement location and the speed 

of propagation, reducing the bit rate will delay the reflections relative to the end of the 
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original copy of the signal and consequently reducing the amount of ISI in the channel. 

However, increasing the bit rate also increases the bandwidth and risks a portion of the 

signal bandwidth falling in a stopband leading to more losses. Hence, the bit rate needs 

to be carefully increased such that most of the signal still falls inside the desired 

passband. 

We tested this theory with three different bit rates of 10, 40, and 50 bits/sec. The 

resulting bandwidth was about 40Hz, 140Hz and 175Hz for the 10, 40, and 50 bits/sec 

cases respectively. For all cases, the bandwidth was defined as the limiting frequency of 

the signal at 40dB down from its peak at the center frequency. The results of the 

simulation are shown in figure 8.13 indicating an improvement for the bit rate increase. 

For the rest of the simulations, 40 bits/sec was used in all cases since 50 bits/sec did not 

offer any significant advantage from the 40 bits/sec case. 

 

 

Figure 8.13: Effect of the bit rate on the probability of packet loss for a (30,10,5) 

convolutional code using decoder-assisted synchronization 
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Effect of the Number of Pipe Segments 

Another parameter that affects the amount of ISI in the received signal is the 

number of pipe segments in the testbed. When more pipe segments are present, the 

stronger reflections coming from the end of the pipe strings have to travel longer 

distances before they get recorded at the receiver. This will also delay the reflections 

with respect to the original copy of the signal and hence reduce ISI. Increasing the 

number of pipe segments will also cause more reflections from the joints but those are 

significantly weaker and will not affect the performance as much. We ran the simulation 

for 50, 100, and 200 pipe segments where the signal, was recorded in the middle of the 

10th pipe segment. The results are shown in figure 8.14 and indicate a major 

improvement when more pipe segments are present and thus verifying our prediction. 

 

 

Figure 8.14: Effect of the number of pipes on the probability of packet loss for a 

(30,10,5) convolutional code using decoder-assisted synchronization 
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Effect of Propagation Distance 

Finally, we tested the effect of the propagation distance on performance to see 

how much the signal can travel down the pipe strings before performance is significantly 

degraded. We ran the simulation for 100 pipe segments and the signal was recorded in 

the middle of the 10th, 20th, 30th, 40th, and 50th pipe segment. The results of figure 8.15 

show a significant degradation in performance beyond the 20th pipe segments. This 

degradation is caused by both the exponential decay of the signal amplitude as it travels 

for longer distances and the proximity of the measurement location to the end of the pipe 

strings causing the reflections to arrive sooner and creating more ISI. 

 

 

Figure 8.15: Effect of distance on the probability of packet loss for a (30,10,5) 

convolutional code using decoder-assisted synchronization 
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In a more realistic scenario, the field testing done in [45] showed that the used 

transmitter created a 1V signal while the noise at the receiving equipment was 1mV. The 

resulting SNR in this configuration is 60dB calculated by:  

 𝑆𝑁𝑅 = 20 log10
1

1 × 10−3
= 60𝑑𝐵 (8.4) 

We would like to see how much strength the signal loses are a function of 

distance so we ran the experiment for a distance between 1 and 6km. Since each pipe 

segment and joint are 10m long, this means that the signal needs to travel for between 

100 and 600 pipe segments. Table 8.2 shows how much strength the signal loses as a 

function of distance. 

 

Table 8.2: Signal strength as a function of distance 

Travelled 

Distance 

(km) 

1 2 3 4 5 6 

Signal 

Strength 

Decay (dB) 

2 10 17 25 30 37 

 

As we can see from table 8.3 and at a distance of 6km, the signal is still at 23dB 

above the noise level from its initial 60dB and the probability of packet loss at that 

distance was less than 0.0004%. 
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CHAPTER IX  

CONCLUSIONS 

 

Summary 

In this dissertation, we attempted to design two modes of communication to 

overcome the challenges imposed by the acoustic vibration of pipe strings for a sensor-

based monitoring and measurements of a given parameter. The first mode requires high 

data rate transmission of either an image or a video in cases of emergency. The second 

mode requires low data rate transmission of periodic sensor readings consisting of a very 

short packet of bits. We first described the channel response and studied the behavior of 

passbands and stopbands in its frequency response. For the high data rate 

communication system, we designed an OFDM based system whose bandwidth spans 

multiple passbands and used error-correction coding to recover the lost information. For 

the low data rate communication system, we designed an appropriate signaling format 

and focused on the synchronization problem for very short packets and came up with the 

appropriate synchronization procedure to improve performance. 

Main Findings 

Channel Characterization 

The pipe strings used for transmission of information have a unique frequency 

response characterized by the presence of several passbands and stopbands that exhibit 

the following behaviors: 
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- The passbands get narrower for higher frequencies while the stopbands get 

wider. 

- The passbands get weaker as a function of both increasing frequency and 

propagation distance. 

- The stopbands get deeper as a function of both increasing frequency and 

propagation distance. 

- The passband strength is dependent on the measurement location within each 

pipe string. 

- The passbands exhibit several fluctuations that decay as function of increasing 

frequency and propagation distance. 

This channel also causes a phase offset to the signal and adds Inter-Symbol-

Interference to the desired wave due to the accumulation of different reflections coming 

from both edges of the pipe strings and from the multiple joints along the way. 

High Data Rate Communication System 

For the high data rate communication system, the data rate offered by the 

passbands was not able to accommodate the transmission of video but was able to 

accommodate colored images within the given time constraints. 

The proposed OFDM system was able to achieve desirable levels of performance 

if the different parameters were tuned appropriately to guarantee better energy 

efficiency. The main conclusions are summarized below: 

- Smaller frequency spacing for the OFDM subcarriers offered a better 

performance since it avoids the fluctuations in the passband by making the 
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channel response for each subcarrier almost flat. The frequency spacing cannot 

be more than 2Hz. 

- A moderate length cyclic prefix can balance between the extra overhead cost and 

the elimination of ISI for the SNR region of interest. The cyclic prefix should not 

be less than 50% of each OFDM symbol. Longer cyclic prefix will give an 

overall worse performance as the cost of overhead begins to outweigh the benefit 

in limiting ISI. 

- Increasing the signal bandwidth and including more passbands will result in a 

poorer performance. 

- The use of the first 3 passbands for transmission offered the best performance in 

terms of achievable depth. The signal for the 16 colors image was able to travel 

slightly more than 6km while the signal for the 256 colors image was able to 

travel slightly more than 5km. 

Low Data Rate Communication System 

For the low data rate single carrier communication system, we examined the 

problem of synchronization for very short packets and studied the effects of 

synchronization errors on the probability of packet loss. We also proposed a simple and 

straight forward frame synchronization algorithm for short packet communication that 

exploits the presence of error-correction codes to perform the synchronization. Finally, 

we combined all synchronization stages and observed the loss in performance incurred 

by imperfect coarse, symbol, phase, and frame synchronization. The main conclusions of 

this section are summarized below: 
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- The size of the uncertainty window has to be reasonably small for reliable 

synchronization of very short signals. We proposed scheduled transmissions to 

help us achieve better synchronization. 

- The pulse shape affects synchronization and must be chosen to maximize the 

performance. We laid out the criteria that need to be satisfied by the pulse shape 

to improve performance and chose the pulse shape that satisfied all of them. 

- The choice of error-correction code affects frame synchronization on short 

packets and convolutional codes seem to offer the best performance for very 

short packets. 

- The code parameters affect the performance and there needs to be a balance 

between the error-correction capability and the energy allocation per bit. 

- The size of the smaller uncertainty window needs to be optimized to balance 

between coarse synchronization and the other synchronization stages. 

- Coarse and symbol synchronization cause more losses to the overall 

performance. 

- The cost of adding pilot symbols outweighs any gain in performance. 

- The achieved performance is very close to the best possible performance given 

the very short nature of the transmitted packet. 

- Recording the signal in the middle of the pipe strings instead of the beginning or 

end boosts the power of the received signal by benefiting from the channel gain. 
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- Increasing the bit rate helps reducing ISI by delaying the reflections with respect 

to the tail of the received signal. The bit rate increase must keep in mind the 

limits of the chosen passband. 

- The addition of more pipe strings to the system improves performance by 

delaying the reflections and reducing the amount of ISI. 

- The system performance rapidly degrades as a function of the propagating 

distance due to the loss in the signal’s amplitude and the amplification of ISI as 

the signal gets closer to the end. 

- The proposed signal was able to travel more than 6km while maintaining a 

probability of packet loss above the performance threshold. 
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APPENDIX A 

 

We will prove equations (5.8) and (5.9). We will split the proof in two parts. The 

first part will be for the noise only case and the second part will be for the presence of a 

signal. 

Noise Only Case 

Let 𝑍𝑘 = 𝑋𝑘 + 𝑗𝑌𝑘 where 𝑗 = √−1, 𝑍𝑘~𝒩(0, 𝜎
2), and 𝑋𝑘, 𝑌𝑘~𝒩(0,

𝜎2

2
) are 

respectively the real and imaginary parts of 𝑍𝑘. 

 |𝑍𝑘|
2 = 𝑋𝑘

2 + 𝑌𝑘
2 (A.1) 

Define 𝑍′𝑘 such that: 

 |𝑍′𝑘|
2 =

2

𝜎2
(𝑋𝑘

2 + 𝑌𝑘
2) (A.2) 

Then |𝑍′𝑘|
2~𝜒2

2 is a Chi-Squared random variable with 2 degrees of freedom. Hence for 

the mean: 

 𝐸[|𝑍′𝑘|
2] =

2

𝜎2
(𝐸[𝑋𝑘

2] + 𝐸[𝑌𝑘
2]) = 2 (A.3) 

 
2

𝜎2
𝐸[|𝑍𝑘|

2] = 2 (A.4) 

 𝐸[|𝑍𝑘|
2] = 𝜎2 (A.5) 

Similarly, for the variance: 

 𝑉𝑎𝑟(|𝑍′𝑘|
2) =

4

𝜎4
(𝑉𝑎𝑟(𝑋𝑘

2) + 𝑉𝑎𝑟(𝑌𝑘
2)) = 4 (A.6) 

 
4

𝜎4
𝑉𝑎𝑟(|𝑍𝑘|

2) = 4 (A.7) 
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 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝜎4 (A.8) 

 

Signal Present Case 

Let 𝑍𝑘 = ±1 + 𝑋𝑘 + 𝑗𝑌𝑘 where 𝑗 = √−1, 𝑍𝑘~𝒩(±1, 𝜎
2), and 𝑋𝑘 , 𝑌𝑘~𝒩(0,

𝜎2

2
). 

 |𝑍𝑘|
2 = 𝑋𝑘

2 ± 2𝑋𝑘 + 𝐸𝑏 + 𝑌𝑘
2 (A.9) 

The mean is found by: 

 𝐸[|𝑍𝑘|
2] = 𝐸[𝑋𝑘

2] ± 2𝐸[𝑋𝑘] + 1 + 𝐸[𝑌𝑘
2] (A.10) 

 𝐸[|𝑍𝑘|
2] = 2𝐸[𝑋𝑘

2] + 1 = 𝜎2 + 1 (A.11) 

The variance is found by: 

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝑉𝑎𝑟(𝑋𝑘

2 ± 2𝑋𝑘 + 1 + 𝑌𝑘
2) (A.12) 

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 𝑉𝑎𝑟(𝑋𝑘

2 + 𝑌𝑘
2) + 4𝑉𝑎𝑟(𝑋𝑘) + 4𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘

2 + 𝑌𝑘
2) (A.13) 

 𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘
2 + 𝑌𝑘

2) = 𝐸[(𝑋𝑘 − 𝐸[𝑋𝑘])(𝑋𝑘
2 + 𝑌𝑘

2 − 2𝐸[𝑋𝑘
2])] (A.14) 

 𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑘
2 + 𝑌𝑘

2) = 𝐸[𝑋𝑘
3 + 𝑋𝑘𝑌𝑘

2 − 𝜎2𝑋𝑘] = 0 (A.15) 

 𝑉𝑎𝑟(|𝑍𝑘|
2) = 2𝑉𝑎𝑟(𝑋𝑘

2) + 4𝑉𝑎𝑟(𝑋𝑘) = 𝜎
4 + 2𝜎2 (A.16) 

Equation (A.15) is justified by the fact that 𝑋𝑘 and 𝑌𝑘 are Gaussian and 

uncorrelated hence 𝑋𝑘 and 𝑌𝑘
2 are also uncorrelated. In addition, since 𝑋𝑘 has zero 

mean, any odd moment of 𝑋𝑘 is zero. Equation (A.16) is justified by the fact that 
2𝑋𝑘

2

𝜎2
 is 

Chi-Squared with 1 degree of freedom and hence: 
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 𝑉𝑎𝑟 (
2𝑋𝑘

2

𝜎2
) =

4

𝜎4
𝑉𝑎𝑟(𝑋𝑘

2) = 2 (A.17) 

 𝑉𝑎𝑟(𝑋𝑘
2) =

𝜎4

2
 (A.18) 
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APPENDIX B 

 

We will prove equations (7.12) for both noise only windows and windows with 

partial signal. 

Noise Only Case 

We start with: 

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

 (B.1) 

This means that 𝑋𝑗~𝒩(0, 𝑛𝜎
2). We calculate the covariance between 𝑋𝑖 and 𝑋𝑗: 

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸[𝑋𝑖𝑋𝑗] − 𝐸[𝑋𝑖]𝐸[𝑋𝑖] = 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

.∑ 𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] − 0 (B.2) 

Since the noise samples are independent from each other: 

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸 [∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)
𝑤𝑝

2

𝑛

𝑝=1

] = 𝜎2∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)

𝑛

𝑝=1

 (B.2) 

 𝜌𝑋𝑖,𝑋𝑗 =
𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2∑ 𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)𝑛

𝑝=1

𝑛𝜎2
=
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.3) 
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Windows with Partial Signal 

Let 𝒓 be the vector of received samples expressed by: 

 𝒓 = [0,… ,0, 𝑐1
(𝑖𝑐), … , 𝑐𝑛𝑏

(𝑖𝑐)] + [𝑤1, … , 𝑤𝑛] (B.4) 

Then 𝑋𝑗 is expressed by: 

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)

𝑛𝑏

𝑖=1

=∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗 (B.5) 

which makes 𝑋𝑗~𝒩(𝜇𝑋𝑗 , 𝑛𝜎
2). The correlation between 𝑋𝑖 and 𝑋𝑗 is calculated by: 

 𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [(∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑖) .(∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

+ 𝜇𝑋𝑗)] (B.6) 

 

𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

.∑ 𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] + 𝜇𝑋𝑗𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

]

+ 𝜇𝑋𝑖𝐸 [∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] + 𝜇𝑋𝑖𝜇𝑋𝑗 

(B.7) 

We know that: 

 𝐸 [∑𝑐𝑝
(𝑖)𝑤𝑝

𝑛

𝑝=1

] = 𝐸 [∑𝑐𝑞
(𝑗)
𝑤𝑞

𝑛

𝑞=1

] = 0 (B.8) 

We can simplify the correlation to: 

 𝐸[𝑋𝑖𝑋𝑗] = 𝐸 [∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)
𝑤𝑝

2

𝑛

𝑝=1

] + 𝜇𝑋𝑖𝜇𝑋𝑗 = 𝜎
2∑𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)

𝑛

𝑝=1

+ 𝜇𝑋𝑖𝜇𝑋𝑗 (B.9) 
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𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸[𝑋𝑖𝑋𝑗] − 𝐸[𝑋𝑖]𝐸[𝑋𝑖]

= 𝜎2∑𝑐𝑝
(𝑖)𝑐𝑝

(𝑗)

𝑛

𝑝=1

+ 𝜇𝑋𝑖𝜇𝑋𝑗 − 𝜇𝑋𝑖𝜇𝑋𝑗 
(B.10) 

 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝜎
2∑𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.11) 

 𝜌𝑋𝑖,𝑋𝑗 =
𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2∑ 𝑐𝑝

(𝑖)𝑐𝑝
(𝑗)𝑛

𝑝=1

𝑛𝜎2
=
1

𝑛
∑𝑐𝑝

(𝑖)
. 𝑐𝑝
(𝑗)

𝑛

𝑝=1

 (B.12) 

The same procedure can be repeated if: 

 𝒓 = [𝑐𝑑
(𝑖𝑐), … , 𝑐𝑛

(𝑖𝑐), 0, … ,0] + [𝑤1, … , 𝑤𝑛] (B.13) 

 𝑋𝑗 =∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+∑𝑐𝑖
(𝑖𝑐)𝑐𝑖−𝑑+1

(𝑗)

𝑛

𝑖=𝑑

=∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗 (B.14) 

We will now prove equation (7.20). We start with the maximum correlation at 

the correct time 𝑍𝑡0~𝒩(𝑛, 𝑛𝜎
2) and assume that 𝒓 is described by (B.4) and 𝑋𝑗 

described by (B.5): 

 𝑍𝑡0 =∑(𝑐𝑖
(𝑖𝑐) + 𝑤𝑑+𝑖−1)

𝑛

𝑖=1

𝑐𝑖
(𝑖𝑐) = 𝑛 +∑𝑐𝑖

(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

 (B.15) 

The correlation between 𝑍𝑡0 and 𝑋𝑗 is calculated by: 

 𝐸[𝑍𝑡0𝑋𝑗] = 𝐸 [(𝑛 +∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

) . (∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

+ 𝜇𝑋𝑗)] (B.16) 
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𝐸[𝑍𝑡0𝑋𝑗] = 𝑛𝐸 [∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

] + 𝑛𝜇𝑋𝑗 + 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

.∑ 𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

]

+ 𝜇𝑋𝑗𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑑+𝑖−1

𝑛

𝑖=1

] 

(B.17) 

We know that: 

 𝐸 [∑𝑐𝑝
(𝑗)
𝑤𝑝

𝑛

𝑝=1

] = 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑤𝑖

𝑛

𝑖=1

] = 0 (B.18) 

We can simplify the correlation to: 

 𝐸[𝑍𝑡0𝑋𝑗] = 𝑛𝜇𝑋𝑗 + 𝐸 [∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)
𝑤𝑖

2

𝑛𝑏

𝑖=1

] = 𝑛𝜇𝑋𝑗 + 𝜎
2∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

 (B.19) 

 

𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗) = 𝐸[𝑍𝑡0𝑋𝑗] − 𝐸[𝑍𝑡0]𝐸[𝑋𝑗]

= 𝑛𝜇𝑋𝑗 + 𝜎
2∑𝑐𝑖

(𝑖𝑐)𝑐𝑑+𝑖−1
(𝑗)

𝑛𝑏

𝑖=1

− 𝑛𝜇𝑋𝑗 

(B.20) 

 𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗) = 𝜎2∑𝑐𝑖
(𝑖𝑐)𝑐𝑑+𝑖−1

(𝑗)

𝑛𝑏

𝑖=1

= 𝜎2𝜇𝑋𝑗  (B.21) 

 𝜌𝑍𝑡0 ,𝑋𝑗 =
𝐶𝑜𝑣(𝑍𝑡0 , 𝑋𝑗)

√𝑛𝜎2. √𝑛𝜎2
=
𝜎2𝜇𝑋𝑗
𝑛𝜎2

=
1

𝑛
𝜇𝑋𝑗 (B.22) 

The same procedure can be repeated if 𝒓 is described by (B.13) and 𝑋𝑗 is described by 

(B.14). 
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APPENDIX C 

SEQUENTIAL MAXIMIZATION ALGORITHM 

 

Let 𝑋1, … , 𝑋5 be Gaussian random variables that are correlated and differently 

distributed. Let us define two boxes where one is the maximization box and the other is 

the correlation box that are illustrated in figure 9.1. 

 

 

Figure 9.1: Illustration of the Maximization Box and the Correlation Box 

 

 

Inside the maximization box, the following operations happen as indicated in 

[51]: 

 𝑎 = √|𝑉𝑎𝑟(𝑋1) + 𝑉𝑎𝑟(𝑋2) − 2𝜌(𝑋1, 𝑋2)√𝑉𝑎𝑟(𝑋1)𝑉𝑎𝑟(𝑋2)| (C.1) 

 𝛼 =
𝐸[𝑋1] − 𝐸[𝑋2]

𝑎
 (C.2) 
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 𝐸[max(𝑋1, 𝑋2)] = 𝐸[𝑋1].Ф(𝛼) + 𝐸[𝑋2]. Ф(−𝛼) + 𝑎.ɸ(𝛼) (C.3) 

 

𝑉𝑎𝑟(max(𝑋1, 𝑋2))

= (𝑉𝑎𝑟(𝑋1). (𝐸[𝑋1])
2).Ф(𝛼)

+ (𝑉𝑎𝑟(𝑋2). (𝐸[𝑋2])
2).Ф(−𝛼)

+ (𝐸[𝑋1] + 𝐸[𝑋2]). 𝑎. ɸ(𝛼) − (𝐸[max(𝑋1, 𝑋2)])
2 

(C.4) 

Inside the correlation box, the following operation happens: 

 

𝜌(𝑋3,max(𝑋1, 𝑋2))

=
√𝑉𝑎𝑟(𝑋1). 𝜌(𝑋1, 𝑋3).Ф(𝛼) + √𝑉𝑎𝑟(𝑋2). 𝜌(𝑋2, 𝑋3).Ф(−𝛼)

√𝑉𝑎𝑟(max(𝑋1, 𝑋2))
 

(C.5) 

 

where Ф(𝑥) and ɸ(𝑥) are the standard normal CDF and pdf respectively. 

The algorithm will approximate the mean and variance of max (𝑋1, … , 𝑋5) in 

steps 1-4 as illustrated in figures 9.2-9.5. 

 

 

Figure 9.2: Illustration of Step 1 
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Figure 9.3: Illustration of Step 2 

 

 

 

Figure 9.4: Illustration of Step 3 
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Figure 9.5: Illustration of Step 4 

 

 

The algorithm can be extended to 𝑁 random variables but it must be noted that 

the more random variables are added the more approximation errors will be 

compounded. 
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APPENDIX D 

PAIRWISE MAXIMIZATION ALGORITHM 

 

Let 𝑋1, … , 𝑋8 be Gaussian random variables that are correlated and differently 

distributed. The same maximization and correlation boxes from Appendix C are used. 

Let us also introduce the pair correlation box as shown in figure 9.6 and whose contents 

are illustrated of figure 9.7. 

 

 

Figure 9.6: Illustration of the Pair Correlation Box 
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Figure 9.7: Contents of the Pair Correlation Box 

 

 

The algorithm will approximate the mean and variance of max(𝑋1, … , 𝑋8) in 

steps 1-3 as illustrated in figures 9.8-9.11. 

 

 

Figure 9.8: Illustration of Step 1 
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Figure 9.9: Illustration of Step 2 

 

 

 

Figure 9.10: Illustration of Steps 3a-3d 

 



 

142 

 

 

Figure 9.11: Illustration of Steps 3e-3h 

 

 

The algorithm can be extended to 𝑁 random variables where 𝑁 must be a power 

of 2, but it must be noted that the more random variables are added the more 

approximation errors will be compounded. 

 


