4,298 research outputs found

    LBR: Load Balancing Routing Algorithm for Wireless Sensor Networks

    Full text link

    On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    Get PDF
    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures

    QoS BASED ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK

    Get PDF
    A Wireless Sensor Networks (WSN) is composed of a large number of low-powered sensor nodes that are randomly deployed to collect environmental data. In a WSN, because of energy scarceness, energy efficient gathering of sensed information is one of the most critical issues. Thus, most of the WSN routing protocols found in the literature have considered energy awareness as a key design issue. Factors like throughput, latency and delay are not considered as critical issues in these protocols. However, emerging WSN applications that involve multimedia and imagining sensors require end-to-end delay within acceptable limits. Hence, in addition to energy efficiency, the parameters (delay, packet loss ratio, throughput and coverage) have now become issues of primary concern. Such performance metrics are usually referred to as the Quality of Service (QoS) in communication systems. Therefore, to have efficient use of a sensor node’s energy, and the ability to transmit the imaging and multimedia data in a timely manner, requires both a QoS based and energy efficient routing protocol. In this research work, a QoS based energy efficient routing protocol for WSN is proposed. To achieve QoS based energy efficient routing, three protocols are proposed, namely the QoS based Energy Efficient Clustering (QoSEC) for a WSN, the QoS based Energy Efficient Sleep/Wake Scheduling (QoSES) for a WSN, and the QoS based Energy Efficient Mobile Sink (QoSEM) based Routing for a Clustered WSN. Firstly, in the QoSEC, to achieve energy efficiency and to prolong network/coverage lifetime, some nodes with additional energy resources, termed as super-nodes, in addition to normal capability nodes, are deployed. Multi-hierarchy clustering is done by having super-nodes (acting as a local sink) at the top tier, cluster head (normal node) at the middle tier, and cluster member (normal node) at the lowest tier in the hierarchy. Clustering within normal sensor nodes is done by optimizing the network/coverage lifetime through a cluster-head-selection algorithm and a sleep/wake scheduling algorithm. QoSEC resolves the hot spot problem and prolongs network/coverage lifetime. Secondly, the QoSES addressed the delay-minimization problem in sleep/wake scheduling for event-driven sensor networks for delay-sensitive applications. For this purpose, QoSES assigns different sleep/wake intervals (longer wake interval) to potential overloaded nodes, according to their varied traffic load requirement defined a) by node position in the network, b) by node topological importance, and c) by handling burst traffic in the proximity of the event occurrence node. Using these heuristics, QoSES minimizes the congestion at nodes having heavy traffic loads and ultimately reduces end-to-end delay while maximizing the throughput. Lastly, the QoSEM addresses hot spot problem, delay minimization, and QoS assurance. To address hot-spot problem, mobile sink is used, that move in the network to gather data by virtue of which nodes near to the mobile sink changes with each movement, consequently hot spot problem is minimized. To achieve delay minimization, static sink is used in addition to the mobile sink. Delay sensitive data is forwarded to the static sink, while the delay tolerant data is sent through the mobile sink. For QoS assurance, incoming traffic is divided into different traffic classes and each traffic class is assigned different priority based on their QoS requirement (bandwidth, delay) determine by its message type and content. Furthermore, to minimize delay in mobile sink data gathering, the mobile sink is moved throughout the network based on the priority messages at the nodes. Using these heuristics, QoSEM incur less end-to-end delay, is energy efficient, as well as being able to ensure QoS. Simulations are carried out to evaluate the performance of the proposed protocols of QoSEC, QoSES and QoSEM, by comparing their performance with the established contemporary protocols. Simulation results have demonstrated that when compared with contemporary protocols, each of the proposed protocol significantly prolong the network and coverage lifetime, as well as improve the other QoS routing parameters, such as delay, packet loss ratio, and throughput

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Real-Time Cross-Layer Routing Protocol for Ad Hoc Wireless Sensor Networks

    Get PDF
    Reliable and energy efficient routing is a critical issue in Wireless Sensor Networks (WSNs) deployments. Many approaches have been proposed for WSN routing, but sensor field implementations, compared to computer simulations and fully-controlled testbeds, tend to be lacking in the literature and not fully documented. Typically, WSNs provide the ability to gather information cheaply, accurately and reliably over both small and vast physical regions. Unlike other large data network forms, where the ultimate input/output interface is a human being, WSNs are about collecting data from unattended physical environments. Although WSNs are being studied on a global scale, the major current research is still focusing on simulations experiments. In particular for sensor networks, which have to deal with very stringent resource limitations and that are exposed to severe physical conditions, real experiments with real applications are essential. In addition, the effectiveness of simulation studies is severely limited in terms of the difficulty in modeling the complexities of the radio environment, power consumption on sensor devices, and the interactions between the physical, network and application layers. The routing problem in ad hoc WSNs is nontrivial issue because of sensor node failures due to restricted recourses. Thus, the routing protocols of WSNs encounter two conflicting issue: on the one hand, in order to optimise routes, frequent topology updates are required, while on the other hand, frequent topology updates result in imbalanced energy dissipation and higher message overhead. In the literature, such as in (Rahul et al., 2002), (Woo et al., 2003), (TinyOS, 2004), (Gnawali et al., 2009) and (Burri et al., 2007) several authors have presented routing algorithms for WSNs that consider purely one or two metrics at most in attempting to optimise routes while attempting to keep small message overhead and balanced energy dissipation. Recent studies on energy efficient routing in multihop WSNs have shown a great reliance on radio link quality in the path selection process. If sensor nodes along the routing path and closer to the base station advertise a high quality link to forwarding upstream packets, these sensor nodes will experience a faster depletion rate in their residual energy. This results in a topological routing hole or network partitioning as stated and resolved in and (Daabaj 2010). This chapter presents an empirical study on how to improve energy efficiency for reliable multihop communication by developing a real-time cross-layer lifetime-oriented routing protocol and integrating useful routing information from different layers to examine their joint benefit on the lifetime of individual sensor nodes and the entire sensor network. The proposed approach aims to balance the workload and energy usage among relay nodes to achieve balanced energy dissipation, thereby maximizing the functional network lifetime. The obtained experimental results are presented from prototype real-network experiments based on Crossbow’s sensor motes (Crossbow, 2010), i.e., Mica2 low-power wireless sensor platforms (Crossbow, 2010). The distributed real-time routing protocol which is proposed In this chapter aims to face the dynamics of the real world sensor networks and also to discover multiple paths between the base station and source sensor nodes. The proposed routing protocol is compared experimentally with a reliability-oriented collection-tree protocol, i.e., the TinyOS MintRoute protocol (Woo et al., 2003). The experimental results show that our proposed protocol has a higher node energy efficiency, lower control overhead, and fair average delay
    • …
    corecore