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Abstract

The use of mobile sensors is of great relevance to monitor hazardous applications where sensors cannot be
deployed manually. Traditional algorithms primarily aim at maximizing network coverage rate, which leads to the
creation of the “energy hole” in the region near the sink node. In this article, we are addressing the problem of
redistributing mobile sensor nodes over an unattended target area. Driven by energy efficiency considerations, a
pixel-based transmission scheme is developed to reduce extra overhead caused by frequent sensing and decision
making. We derive the optimal node distribution and provide a theoretical explanation of balanced energy
depletion for corona-based sensor network. In addition, we demonstrate that it can be extended to deal with
uneven energy depletion due to the many-to-one communications in multi-hop wireless sensor networks.
Applying the optimal condition, we then propose a novel sensor redistribution algorithm to completely eliminate
the energy hole problem in mobile sensor network. Extensive simulation results verify that the proposed solution
outperforms others in terms of coverage rate, average moving distance, residual energy, and total energy
consumption.

1. Introduction
Wireless sensor network (WSN) usually consists of a
large number of static sensor nodes that are densely
deployed for object monitoring and target tracking
either inside the phenomenon or very close to it [1].
Sensor nodes are able to measure various parameters of
the environment and transmit collected data to the sink
node through multi-hop communication. Once the sink
node received sensed data, it processes and forwards it
to the users.
Nodes deployment is the first step in establishing a

sensor network. In general, sensor nodes are typically
battery powered and randomly deployed over a target
area. Once deployed, they are left unattended. In many
potential working environments, such as monitoring
hazardous applications over disaster areas, deploying
such a stationary sensor network cannot be performed
manually or precisely. Thus, maintaining its sensing cov-
erage could be a difficult task. As a result, it is necessary

to make use of mobile sensors, which can autonomously
discover and repair coverage holes.
How to optimize energy consumption to prolong net-

work lifetime is one of the fundamental issues arising in
WSN. To address this issue, much work has been done
during recent years where mobility of sensors is taken
advantage of to achieve desired distribution [2-8]. Typi-
cally, most of these works have addressed the redistribu-
tion of mobile sensors to achieve a uniform coverage of
a certain density in the target area. If the sensor nodes
are deployed uniformly, the sensors closer to the sink
not only need to send their own sensed data, but also
forward data collected by other sensors farther away
from the sink node. In this case, those sensors near the
sink node will consume more energy and die more
quickly. Once those nodes are dead, no more data can
be transmitted to the sink. As a result, the network
would get disconnected, with up to 90% of the total
initial energy left unused in a normal uniform distribu-
tion [9]. Exploiting redistribution of the nodes by using
sensor mobility to balance the energy depletion is of
great importance to prolong the network lifetime.* Correspondence: jiajie@ise.neu.edu.cn
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In this article, we investigate and try to eliminate the
energy hole problem with non-uniform node distribu-
tion in mobile WSN. We first propose a new data trans-
mission mechanism to reduce the redundant messages
being sent. We also prove that based on this transmis-
sion mechanism, an energy-balanced depletion among
all the working sensors is possible when each corona
has an appropriate node density. Then, the concept of
the equivalent sensing radius is devised and a novel sen-
sor distribution algorithm for mobile sensor networks is
proposed to achieve balanced energy depletion based on
genetic algorithm. Further, we conduct extensive simula-
tions to validate the analysis and compare the perfor-
mance of these algorithms. Simulation results show that
when the network lifetime ends, the nodes in the target
area almost use up their energy simultaneously, which
can prolong the network lifetime effectively.

2. Related study
Sensor distribution is a critical issue because it affects
the cost, connectivity, and detection capability of WSN.
There has been some work on the sensor distribution to
maintain full coverage as well as connectivity with opti-
mal sensor movement for mobile sensor networks. In
[4], the authors assume that there are virtual attractive
and repulsive forces among sensors, and based on these
virtual forces, sensors can spread throughout the envir-
onment with a uniform distribution to achieve the net-
work coverage. In [6], the authors propose a Voronoi
diagram-based distribution model, in which each sensor
iteratively calculates its Voronoi polygon to detect its
coverage holes and moves to a better position to
enhance the coverage rate of the field. In [7], the
authors investigate how to move sensors while still
maintaining complete coverage of the field. In [8], the
sensing field is divided into grids. And then, the sensors
move from high-density grids to low-density ones to
construct a uniform topology. These algorithms all
focused on finding a uniform distribution of sensor
nodes, to improve the coverage performance for mobile
sensor network. However, as the uniform distribution
may lead to unbalanced energy depletion, the above
approaches will cause prematurely the end of the net-
work lifetime with a considerable amount of energy
wasted.
The problem of uneven energy consumption in a

large class of many-to-one sensor networks was investi-
gated by Li and Mohapatra [9] for the first time.
Further, they proposed several approaches to mitigate
this problem and inferred that simply increasing the
number of nodes cannot prolong the system lifetime
under a uniform distribution [10]. In [11], the authors
propose a transmission range adjustment approach to
tackle the unbalanced energy depletion. However,

searching the optimal transmission ranges of sensors
among all the coronas is an NP-complete problem. In
[12], the authors use mobile sensors to heal energy
holes, but the cost of their approaches is considerably
large. The mobile relays [13] and mobile sink [14] are
also imported to avoid energy hole. However, as the
nodes near the sink or relay nodes always changed over
time, the energy imbalance is only mitigated and how
to plan the optimal mobility trajectory is very difficult.
In [15], the authors focus on variable node distribution
density in order to mitigate the effects of the uneven
energy depletion. However, associated with their routing
strategy, the uneven energy depletion still exists. The
authors in [16] also investigated the energy hole pro-
blem in WSN with non-uniform node distribution.
With their theoretical analysis, when all the sensors
have a constant data acquisition rate, the energy-
balanced depletion among the whole network is impos-
sible. Nevertheless, nearly balanced energy depletion in
the network is possible if the number of nodes increases
in geometric progression from the outer coronas to the
inner ones except the outermost one. Based on this
strategy, the authors in [17] propose an autonomous
sensor redeployment algorithm δ-Push&Pull to mitigate
the sink-hole problem. However, as they assume that
each sensor has a constant data acquisition rate, which
may not be true for highly dense WSN and the uneven
energy depletion still exists between the outermost cor-
ona and the inner coronas. In fact, we can prove that
completely balanced energy depletion is achievable with
the additional help of pixel-based transmission mechan-
ism in this article.
The rest of the article is organized as follows. Section

3 describes the preliminary work and the network
model for our discussion. Section 4 theoretically ana-
lyzes how to balance the energy depletion and computes
the node density for each corona. A new non-uniform
node distribution strategy is proposed for energy-
balanced depletion in Section 5. Section 6 presents the
simulation results for our algorithms, and Section 7 con-
cludes the article.

3. Preliminary work and network model
3.1. Network model and assumptions
In this section, we present our network model and make
some basic assumptions about such a model. Assume
that a set of N heterogeneous sensors are deployed in a
circular area with radius d in order to monitor some
physical phenomenon. Each sensor node has an ID, a
fixed transmission range Rc, and a fixed sensing range
Rs. All of the sensor nodes are aware of their position
and can report the location where the information is
sensed. The only sink node is located at the centre of
the circle, as shown in Figure 1.
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We divide the area into n adjacent coronas with the
same width of Rc. For clear presentation, the coronas
from inside to outside are denoted as C1, C2,..., Ci, ..., Cn.
Obviously, the corona Ci is composed of nodes whose
distances to the sink are between (i - 1)*Rc and i*Rc.
The network works in two phases: the first phase of

node redistribution and the second phase of field monitor-
ing and data gathering. During the second phase, each
working sensor should send its sensing message to the
sink node periodically. The corona survival lifetime is
defined as the number of working rounds in which its sen-
sors participate until the first sensor runs out of energy.
With regard to the network survival lifetime, it can be cal-
culated as the minimum survival time of its coronas.
We use a simplified power consumption model and

do not mention any physical layer functionality or solu-
tion in MAC layer. In our model, the energy consump-
tion is only dominated by communication costs, as
opposed to sensing and processing costs. The initial
energy of each sensor is set as ε > 0, and the sink node
has no energy limitation. We further assume that a sen-
sor consumes e1 units of energy when sending one bit
while it depletes e2 units of energy when receiving one
bit, where e1 >e2 > 0.

3.2. Coverage model
The target area A is digitized into m*n pixels and each
pixel size is equal to 1. We refer to the set of sensor
nodes which has been deployed in the target area as S =
{s1, s2, ..., sN}. The coverage model of each sensor si can
be expressed as a circle with center of its coordinates
(xi, yi) and radius ri. A random variable ci is introduced
to describe the event that a pixel (x, y) is covered by the
sensor si. In hence, the probability of an event ci,
denoted as P{ci}, is equal to the coverage probability
Pcov(x, y, ni). This may degenerate to a two-valued func-
tion

P{ci} = Pcov (x, y, si) =
{
1 if (x − xi)

2 + (y − yi)
2 ≤ r2i

0 otherwise.
(1)

That is to say, a pixel (x, y) is covered by a sensor si if
its distance to the circle center (xi, yi) is not larger than
the radius ri. Since any random event ci is independent
to the others, ri and rj are unrelated, i, j Î [1, N] and i
≠ j. Then, the following two relationships can be con-
cluded,{

P{c̄i} = 1 − P{ci} = 1 − Pcov (x, y,ni)
P{ci ∪ cj} = 1 − P{c̄i ∩ c̄j} = 1 − P{c̄i} · P{c̄j} (2)

where c̄i is the complement of ci, denoting that si fails
to cover the pixel (x, y). It can be considered that the
pixel (x, y) is covered if any node in the set covers it.
So, the probability of the pixel (x, y) covered by the
node set can be denoted as the union of ci

Pcov (x, y, S) = P{
N⋃
i=1

ci} = 1 − P{
N⋂
i=1

c̄i}

= 1 −
N∏
i=1

(1 − Pcov (x, y,ni)).

(3)

Finally, we define the coverage rate of the sensor set
Pcov(S) as the proportion of the coverage area Aarea(C)
to the total area As,

Pcov(S) =
m∑
x=1

n∑
y=1

Pcov(x,y,C)/(m × n) (4)

3.3. Pixel-based transmission mechanism
With traditional transmission mechanism, the sensing
messages for redundant coverage area would be retrans-
mitted by more than one sensor, causing a tremendous
amount of energy to be wasted [15]. In order to save
energy, a novel data transmission mechanism is deigned
in this article.
After all the sensor nodes are redistributed, each sen-

sor node needs to decide its working area for periodi-
cally field sensing and transmitting. In this article, we
take intersection of each sensor’s Voronoi polygon and
its sensing disk as the sensing area, as shown in Figure
2. The Voronoi polygon is an important graph in com-
putational geometry [18,19], which can represent the
proximity information of a set of geometric nodes. Since
the interior pixels in a given polygon are closer to its
sensor than to any other one, with the help of Voronoi
polygon, it can guarantee that the sensing message for
each pixel is sensed and transmitted only once.
To construct the Voronoi polygon, all the sensors

should calculate the bisectors of their neighbors and
themselves. These bisectors could form several polygons,
and the smallest one encircling the sensor is the Voro-
noi polygon of this sensor. In our approach, as all the

C1

C2

C3

C4

sink

Figure 1 A circular target area with four coronas.
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sensors keep stationary after redistribution, the Voronoi
graph is constructed only when the process of nodes
redistribution control has finished. Hence, the Voronoi
diagram will remain unchanged until the end of network
lifetime. Furthermore, in order to reduce the extra over-
head caused by frequent sensing area decision and mini-
mize the sensing time efficiently, each node should
remember all of the sensing pixels after its Voronoi
polygon is built. With these supports, the extra energy
consumption caused by sensing area decision is similar
to the typical Voronoi application in WSNs [6]. By the
use of Voronoi polygon construction and pixel remem-
bering, this is named as pixel-based transmission
mechanism in this article.
Figure 2 shows the difference of our mechanism with

traditional mechanism, where Figure 2a is the initial sen-
sor deployment, and Figure 2b is the corresponding sen-
sing area in each sensor’s Voionoi diagram (with different
colors). When traditional transmission mechanism is used,
the number of messages transmitted by sensor S2 is 14
(the green area shown in Figure 2a). While the pixel-based
transmission mechanism is used, the number of messages
transmitted reduced to 10. To sum up, as the duplicate
sensing message is sent only once by the use of pixel-
based transmission mechanism, the total number of dupli-
cated messages saved to transmit is 12.

4. Accessibility condition for energy-balanced
depletion
In our network model, nodes belonging to corona {Ci|i
≠ n} will forward both the data generated by themselves
and the data generated by coronas {Cj|(i+1) ≤ j ≤ n}.
While the nodes in the outermost corona Cn need not
forward any data. Assume that the sensors in each cor-
ona are distributed uniformly and there is no data
aggregation at any forwarding nodes. Define the number
of nodes deployed in corona Ci is Ni and the number of

pixels in corona Ci is Ai. Based on the pixel-based trans-
mission mechanism, the number of messages for corona
Ci to receive and forward is (Ai+1+ Ai+2+···+An) and (Ai

+Ai+1+···+An). As the sensing messages are transmitted
per working round, the average energy consumption per
working round of sensors in corona Ci is

Ēi =

[
n∑

k=i+1

Ak(e1 + e2)+Aie1

]/
Ni, 1 ≤ i ≤ n − 1. (5)

where e1 is the energy consumed in sending one bit
message, and e2 is the energy consumed in receiving
one bit message. Note that Equation (5) can be simpli-
fied as

Ēi =
e1
ρi

+
Ai+1 + Ai+2 + · · · + An

Ai · ρi
(e1 + e2), 1 ≤ i ≤ n − 1. (6)

where ri is the node density of corona Ci.
Sensors in corona Cn only need to send their own

sensing messages, so the energy depletion of sensors in
corona Cn is

Ēn = An · e1/Nn = e1/ρn (7)

Thus, we can formulate Ēi as follows

Ei =

⎧⎪⎪⎨
⎪⎪⎩
e1/ρn, i = n,

e1
ρi

+

n∑
k=i+1

Ak

Ai · ρi
(e1 + e2), 1 ≤ i ≤ n − 1.

(8)

Ideally, when all the nodes deplete their energy with the
same ratio, the network lifetime is prolonged and the
energy efficiency is improved. In particular, there is no
energy wasted and the network lifetime can be given by

ε

Ē1
=

ε

Ē2
= · · · = ε

Ēi
= · · · = ε

Ēn
(9)

Theorem 1: Perfect and maximum energy efficiency is
possible when the node distribution density ri in corona
Ci satisfies

ρi = ρn · [1 +
(n2 − i2) · (e1 + e2)

(2i − 1) · e1 ], ρ1 ≥ ρ2 ≥ · · · ≥ ρn (10)

Proof: To use the deductive method, suppose Equation
(10) is true, thus Equation (6) can be rewrote as follows

Ēi =

Ai · e1 +
n∑

i=k+1
Ai · (e1 + e2)

Ai · ρi

=

[Ai · e1 +
n∑

i=k+1
Ai · (e1 + e2)] · (2i − 1) · e1

Ai · ρn · [(2i − 1) · e1 + (n2 − i2) · (e1 + e2)]

(11)

Figure 2 Comparison of the number of data transmitted with
different transmission mechanisms. (a) Traditional transmission
mechanism (the number of transmitted message is 42), (b) pixel-
based transmission mechanism (the number of transmitted message
is 30).
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Owing to Ai = πR2
c · (2i − 1) , after basic transforma-

tions, we have

Ēi =
[(2i − 1) · e1 + (n2 − i2) · (e1 + e2)] · (2i − 1) · e1
(2i − 1) · ρn · [(2i − 1) · e1 + (n2 − i2) · (e1 + e2)]

=
e1
ρn

= Ēn

(12)

Since
dρi

di
=

−2i
(2i − 1)

− 2(n2 − i2)

(2i − 1)2
< 0 is a perma-

nent establishment, we can get the following conclusion,
r1 ≥ r2 ≥ ··· ≥ rn. This completes the proof of Theorem
1.
From Theorem 1, if all the sensors adopt the pixel-

based data transmission mechanism, and the node den-
sity of each corona obeys a certain condition, the
energy-balanced depletion of the whole network can be
achieved. In addition, we can draw a conclusion that ri
only relates to rn and its corona number i.
Further we will analyze the lifetime enhancement of

the non-uniform distribution strategy to the traditional
one. Note that the node density in non-uniform distri-
bution satisfies Equation (10) and the initial conditions
are the same. In the uniform distribution, the density ri
is equal to rn. As the innermost corona C1 needs to for-
ward all of the sensing messages in the whole network,
it consumes the most energy. Thus, the maximum life-
time of network in uniform distribution is determined
by the survival time C1. The network lifetime can be
calculated as

ε

Ē′
1

= ε

/(
e1
ρn

+

∑n
j=2 Aj

A1 · ρn
(e1 + e2)

)
.

=
ρn · ε

e1 + (n2 − 1) · (e1 + e2)

(13)

where Ē′
1 is the average energy depletion of C1 per

unit time in uniform distribution. Using Equation (8),
we can get the average energy depletion in C1 under
energy-balanced conditions as

Ē1 = Ē2 = · · · Ēi = · · · = Ēn =
e1
ρn

. (14)

Thus, the lifetime enhancement is

ε
/
Ē1

ε
/
Ē′
1

=
e1 + (n2 − 1) · (e1 + e2)

ρn

/
e1
ρn

=
ρ1

ρn
> 1. (15)

Therefore, the network lifetime of non-uniform distri-
bution can be extended r1/rn times effectively compared
with the traditional uniform distribution strategy.

5. Non-uniform node distribution optimization
In this article, the energy-balanced node distribution is
defined as the state when all the working sensors in the
whole network use up their energy simultaneously. In
this section, we first describe the concept of equivalent
sensing radius. And then, the energy-balanced node dis-
tribution problem is transformed into uniform distribu-
tion optimization problem with different sensing radius.
Further, we give an NSGA-II-based node [20] redistribu-
tion approach to solve this problem.

5.1. Equivalent sensing radius
Definition 1 (equivalent sensing radius): it is defined as
the sensing radius when the given distribution density ri
is the lowest one to maintain network coverage.
As the hexagonal distribution is the optimal sensor

distribution to cover the target area completely with the
fewest sensors [21], we define Hex(i) as the hexagonal
area covered by sensor si with the sensing radius Ri. It
can be calculated as

Hex(i) =
3
√
3

2
R2
i

(16)

And the minimum distribution density ri to fully
cover the area is

ρi =
1

Hex(i)
. (17)

Thus, the relationship of the equivalent sensing radius
and the optimal distribution density ri is

Ri =

√
2√

27 · ρi
. (18)

Theorem 2: If the sensor selection algorithm uses the
equivalent sensing radius Ri according to the density ri,
the network can achieve balanced energy depletion,
where Ri satisfies,

Ri = Rs

√
(2i − 1) · e1

(2i − 1) · e1 + (n2 − i2) · (e1 + e2)
, R1 ≤ R2 ≤ · · · ≤ Rn. (19)

Proof: According to Equation (18), the minimum den-
sity ri to fully cover the corona Ci with equivalent sen-
sing radius Ri can be calculated as

ρi =
2√

27 · Ri
2 (20)

As the outermost corona only needs to send its own
sensing messages, its sensing radius is equal to its
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sensing radius Rs. Then the minimum density rs to fully
cover the corona Cn is

ρs =
2√

27 · Rs
2

(21)

Substitute the above equation into Equation (10) and
combine it with Equation (20), we have

ρi =
2√

27 · Ri
2

=
2√

27 · Rs
2

· [1 +
(n2 − i2) · (e1 + e2)

(2i − 1) · e1 ]
(22)

After transformation, we have

Ri = Rs ·
√

(2i − 1) · e1
(2i − 1) · e1 + (n2 − i2) · (e1 + e2)

. (23)

This concludes the proof of Theorem 2.
Therefore, by introducing the equivalent sensing

radius, this thorny issue can be transformed into a uni-
form distribution optimization problem with different
sensing radius, which gives the chance of using present
distribution algorithms. In this article, the node distribu-
tion algorithm is combined with our previous NSGA-II-
based approach [22], in which we made major modifica-
tions to satisfy the condition defined in Equation (10).
The novel sensor distribution algorithm mainly con-

tains two parts: movement control among different cor-
onas and movement control in each corona. The first
part aims at moving the nodes between the adjacent
coronas so as to meet the needs of different sensor den-
sities, while the second part aims to achieve an optimal
node distribution.

5.2. Movement control among coronas
As the nodes are randomly deployed in the target area,
this uncertainty may cause that the number of deployed
nodes is greater or less than that the corona really
needs. The movement control among coronas will
satisfy the desired node density according to Equation
(10) for each corona. Meanwhile, in order to avoid con-
suming too much energy in the moving process, the
nodes are only allowed moving to the adjacent coronas.
By using a stepwise manner, the whole moving process
is shown as follows
Step 1: The sink or the cluster head counts sensors

deployed for each corona. Set the number of sensors
deployed in corona Ci is deployedNumInCi.
Step 2. The sink or the cluster head computes the

desired number of sensors desireNumInCi for each cor-
ona. It is calculated as desireNumInCi = ri * Si, where Si
is the area of corona Ci.

Step 3. From the outermost corona CN to the inner-
most corona C1, the relationship between deployedNu-
mInCi and desireNumInCi is determined sequentially,
and then
Step 3.1. If deployedNumInCi >desireNumInCi, then

deployedNumInCi - desireNumInCi nodes nearer to cor-
ona Ci-1 are selected from Ci to move straight to Ci-1.
Based on such analysis, the number of sensors deployed
in Ci-1 can be updated as deployedNumInCi-1 =
deployedNumInCi-1 + (deployedNumInCi -
desireNumInCi);
Step 3.2. If deployedNumInCi <desireNumInCi, then

desireNumInCi - deployedNumInCi nodes nearer to cor-
ona Ci are selected from Ci-1 to move straight to Ci.
Similarly, the number of sensors in Ci-1 is updated as
deployedNumInCi-1 = deployedNumInCi-1 - (desireNu-
mInCi - deployedNumInCi).

5.3. Movements control in each corona
According to Equation (19), the equivalent sensing
radius is only related to corona number i. Therefore, the
movement control in corona Ci is similar to the tradi-
tional uniform node distribution problem. The main
objective of movement control in each corona is to fully
cover Ci with minimum moving distance.
Define the sensor set in Ci as Seti = {si1, si2, ..., sin}, the

initial and final location of Seti are Li-initial = {li1, li2, ...,
lin} and Li−final = {l′i1, l′i2, . . . , l′in} . The movements con-

trol in Ci can be described as the following Multi-objec-
tive Optimization Problem (MOP):

min

⎧⎨
⎩
f1(x̄) = 1 − Pcov (Si)

f2(x̄) =
∑

i∈Si
∥∥l′i − li

∥∥
s.t.

∥∥ l′i − li
∥∥ ≤ dth

(i − 1) ∗ Rs ≤ ∥∥ l′i − lsin k
∥∥ ≤ i ∗ Rs

(24)

Remarks:

• The objective function wants to maximize the net-
work coverage rate while minimize the total moving
distance of sensors.
• The first constraint requires that the distances
between the initial and final position of any sensor is
not larger than dth.
• The second constraint requires that the new loca-
tion for each sensor is still in the region of corona
Ci.

As discussed above, the goal of movement control in
corona is to find the solutions giving the best trade-off
between the two conflict objectives, known as Pareto
optimal. As NSGA-II is recognized to be well qualified
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to tackle MOPs, we then propose a NSGA-II-based
algorithm to find the best node distribution in each
corona.
NSGA-II works by evolving a set of solutions to a pro-

blem inspired by the genetic mechanisms of natural spe-
cies evolution [23]. In order to tailor NSGA-II for a
particular problem, the individual representation and
the corresponding recombination and mutation operator
are inevitable.
Represent solutions for the problem is the first issue

in an NSGA-II application. Aiming at the problem of
node distribution optimization in each corona, an effec-
tive coding scheme is applied to represent solutions
based on node coordinate, as shown in Figure 3.
The implementation of recombination and mutation

necessarily depends on the underlying genotypic repre-
sentation. As the node coordinate-based representation
is adopted, the traditional binary genetic operator can-
not be used directly. Therefore, the simulated binary
crossover operator (SBX) [24] is applied. Define the
parents are ā1 and ā2 , and the two children produced
by SBX are ⇀

c1 and ⇀

c2 . In hence, the gene
Cl,i(xc

1,i
, yc

1,i
) and C2,i(xc

2,i
, yc

2,i
) in children ⇀

c1 and ⇀

c1
are {

xc1,i = 0.5 · ((1 + β) · xa1,i + (1 − β) · xa2,i
)
,

yc1,i = 0.5 · ((1 + β) · ya1,i + (1 − β) · ya2,i
)
.{

xc2,i = 0.5 · ((1 − β) · xa1,i + (1 + β) · xa2,i
)
,

yc2,i = 0.5 · ((1 − β) · ya1,i + (1 + β) · ya2,i
)
.

(25)

where b is the upper limit of the integral correspond-
ing to the probability distribution curve. The mutation
operator is applied for each new child generated after
recombination. In this article, the exponential mutation
is adopted. If an element ai is selected to be mutated, its
value changed as

ai′ =

{
ai − δ(t, ai − Li), random(0,1) < 0.5,

ai + δ(t,Ui − ai), random(0,1) > 0.5.
(26)

where t is the generation number, Li and Ui are, respec-
tively, the lower and upper bounds of ai, which is defined
by the second constraint in Equation (26). Note that δ(t,
x) is an exponential function, and it is defined as

δ(t, x) = x · u ·
(

− t
T

)η

, 0 ≤ u ≤ 1, (27)

where u is a random number, T is the maximum
number of generations, and h is an exponent determin-
ing the probability distribution.
Similar to the VFA [4], the execution of node distribu-

tion problem is designed to be executed on the sink or
cluster node, which is expected to have more computa-
tional resources. In this way, it would save more com-
puting power for each individual sensor. The sink or the
cluster head uses our algorithm to find these appropri-
ate locations, and the designated positions are sent back
to the sensors. No movements are performed during the
execution of the algorithm. The main procedure of our
algorithm is described as follows.
Input: Initial sensor location {X̄S initial, ȲS initial} in cor-

ona Ci

The number of generations T and the population
size K
The recombination probability Pr;
The mutation probability Pm;
The reduction rate of controlled elitism r.

Output: new sensors’ location {X̄S, ȲS} in corona Ci

Step 1 (initialization):

Set t = 0, P’ = j;
Generate an initial population P randomly;
Calculate f1(x) and f2(x) for each individual by Equa-
tion (24);

Step 2 (Non-dominated sorting):

P = P∪P’;

Do fast non-dominated sorting algorithm, resulting
non-dominated fronts (F1, F2,..., FR);
Step 3 (controlled elitism)
Set r = 1 and P = j;
While |P| < K do

(1) Calculate nr according to the controlled elitism
scheme;

x

y

{<x1,y1>,<x2,y2>,<x3,y3>,<x4,y4>,<x5,y5>,<x6,y6>}

1 2

3

4

5
6

Figure 3 Node coordinate based individual representation.

Jia et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:68
http://jwcn.eurasipjournals.com/content/2012/1/68

Page 7 of 11



(2) Sort Fr in descending order using crowded
comparison;
(3) Put the first nr members of Fr in P, i.e., P = P∪Fr
[1:nr];
(4) r = r + 1.

Step 4 (Fitness assignment):

Assign fitness to each individual according to its
position in P;

Step 5 (Reproduction)

Generate an offspring P’ from P according to SBX
and mutation operator;
Calculate f1(x) and f2(x) for each individual in P’;

Step 6 (Termination):

t = t + 1;

if t ≥ T or the required f1(x) and f2(x) are met then
terminate;
else go to Step 2.
The complexity of the fast non-dominated sort is O

(2N2), the crowding distance assignment is O(2NlogN)
and the controlled elitism sorting is O(2Nlog(2N)).
Thus, the overall complexity of the above algorithm is
O(2N2), where N is the number of sensors deployed in
corona Ci.

6. Simulation results
In this section, we will present a set of experiments
designed to evaluate the performance of the proposed
algorithm. Three metrics, including coverage rate, the
total moving distance, and the network survival lifetime,
are measured and compared with existing algorithms.
The initial energy reserve of each node ε is 10000 J,

the values of e1 and e2 are given as follows: e1 = 0.5/103

J/bit, e2 = 0.25/103 J/bit [25]. The length of unit sensing
data L is 1000 bits, the transmission range of the sensor
nodes is 20, and the sensing radius of each sensor nodes
is 8. The total number of working periods for each sen-
sor is calculated as (ε - εred)/[L*Mi*e1 + L*Ni*(e1 + e2)],
where Mi is the total number of pixels covered by sen-
sor si, Ni is total number of messages forwarded by si,
and εred is the energy consumed in the process of node
redistribution, which mainly composes of εmov (energy
consumed in mechanical movement) and εcom (energy
consumed in communication). Here, the energy con-
sumed in movement is normalized into communication.
That is, with the same amount of energy consumed in 1
m movement, approximately 300 signal messages can be
transmitted [26]. Thus, for any sensor si, the energy

consumed in redistribution εired is

⎧⎪⎨
⎪⎩

εired = εimov + εicom

εimov = 300di · Ls · e1
εicom = Ls · (pi · e1 + qi · e2)

(28)

where di is the total moving distance, Ls is the length
of signal message (set as 100 in this article), pi is the
total number of transmitted signal messages, and qi is
the total number of received signal messages for redis-
tribution control.
The sensing data forwarding strategy are similar to

[16]. As it obeys an approximate uniform distribution in
each corona, any node in corona Ci can communicate
with almost ri-1 · Ai-1/ri · Ai nodes in the ring Ci-1

directly. Among these candidate nodes, the node with
most residual energy will be selected as the forwarding
one.
At first, 64 potential sensors are deployed randomly in

the circular area with radius 40, as shown in Figure 4a.
The target area is divided into two coronas denoted as
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Figure 4 Illustration of non-dominated solutions obtained in
the simulation. (a) Initial distribution, coverage rate 73.25%; (b) the
10th generation, coverage rate 80.53%, total moving distance is
1192; (c) the 30th generation, coverage rate 82.43%, total moving
distance 1143; (d) the 100th generation, coverage rate 92.43%, total
moving distance 1069.
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C1 and C2. From Equation (19), the equivalent sensing
radius of C1 to C2 is calculated as 3.41 and 8. The popu-
lation size, the recombination rate, the mutation rate,
and the reduction rate are set as 200, 0.9, 0.01, and 0.5,
respectively [22]. We compare our algorithm with the
VFA approach in terms of the coverage rate, the total
moving distance and the network survival time.
The illustration of non-dominated solutions obtained

in the simulation is shown in Figure 4. Figure 4a is the
initial distribution, and the sensor distribution after run-
ning 10 generations is shown in Figure 4b, in which the
coverage rate is 80.53% and the total mobile distance is
1192. Obviously, much better solutions are obtained in
subsequent generations. For instance, compare the solu-
tions in 10th generation with those in 50th generation,
the latter uses fewer sensors and achieves a higher cov-
erage rate as shown in Figure 4c. And the solutions
shown in Figure 4d are most close to hexagonal geome-
try generally acknowledged to be the optimal sensor dis-
tribution. It achieves the coverage rate of 92.43% with
total moving distance being 1069. In addition, the num-
ber of working nodes distributed in corona C1 and C2 is
24 and 40, respectively, which is approximate to the
energy balance accessibility condition.
In Figure 5, we compare the results of our algorithm

with VFA in different number of iterations/generations.
Observing the simulation results from the beginning to
200th generation in Figure 5, we can clearly see that our
approach directs toward the global optimal solution.
And after 100th generation, no better solutions can be
found to dominate the sub-optimal solution in our algo-
rithm, which shows that it can converge rapidly to the
optimal solution. However, it takes larger total moving
distance by using non-uniform distribution strategy.
This is mainly due to the smaller equivalent sensing
radius in the inner corona. In order to achieve the
desired coverage rate, more movement is needed. On
the other hand, as our approach has much smaller sen-
sing radius, it helps to mitigate the boundary effects. In
conclusion, it gets much higher coverage rate than VFA
approach.
Figure 6 shows the comparisons of energy depletion in

one working round. As each sensor remembers its sen-
sing pixels, the energy depletion in working rounds does
not include the energy consumed in constructing the
Voronoi polygon. Here, nodes with smaller ID numbers
belong to corona C2, and those with larger ID are in
corona C1. The VFA algorithm are dedicated to achieve
a uniform sensor distribution in the target area, so it
has a larger distributed density in outer corona and a
smaller distributed density in inner corona. As sensors
in outer corona only need to transmit its own sensing
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Figure 5 Moving distance and coverage rate comparisons in
different number of iterations/generations. (a) Comparisons of
moving distance; (b) Comparisons of coverage rate.
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messages and do not need to forward any other mes-
sages, it can consume less energy when the VFA method
is used with more sensors in outer corona. Whereas in
the inner coronas, those nodes have to receive and for-
ward the messages from outer coronas, the VFA has
higher energy depletion than non-uniform approach.
The residual energy of each node at the end of the

lifetime is shown in Figure 7. Here, the pixel-based
transmission mechanism is also applied in the VFA
algorithm. From Figure 7, it is clear to see that the resi-
dual energy ratio in non-uniform strategy is much lower
than the VFA algorithm. Moreover, the residual energy
ratio of each node is nearly the same in non-uniform
strategy. In contrast, to the VFA algorithm, while sen-
sors in inner corona are dead, there is more than 85%
energy unused in outmost corona. This is fit to the the-
oretical expectation and implies the effectiveness of our
proposed strategy.
In order to further evaluate the performance of our

algorithm, we compare it with VFA and δ-Push&Pull
non-uniform redistribution approach in many cases.
There are variable numbers of sensor nodes (varied
from 64 to 2675) deployed in different size of target
area (varied from 40 to 140). To get the optimal results,
all the simulation results are obtained after the genetic
algorithm executed more than 500 generations.
Figure 8 shows the comparison of energy consumed in

sensor redistribution. As can be seen from Figure 8,
when the field area enlarges and the number of nodes
increases, our algorithm and δ-Push&Pull consumed
much more energy in the sensor redistribution. This is
mainly because that the inner coronas have more sen-
sors deployed than the outer one in non-uniform sensor
distribution strategies. The higher density of the inner
coronas, the more movement is needed. In δ-Push&Pull
approach, the number of nodes grows in geometric pro-
gression from the outer coronas to the inner ones

except the outermost corona. Therefore, it has not only
more nodes distributed in inner coronas, but also a
higher sensor movement than our approach. Compared
with non-uniform sensor redistribution, as VFA algo-
rithm merely aims at fully covering the target area, its
average moving distance decreases when the node den-
sity increases.
Figure 9 shows the comparison of network lifetime in

different target area size. Although the uniform distribu-
tion aims at maximizing coverage rate with the least
sensor movement, it does not consider the imbalance
consumption of energy near the sink node. The uneven
energy depletion will cause the energy hole and leads to
degraded network. When the size of target area
increases, the VFA algorithm has the shortest network
lifetime, as shown in Figure 9. In addition, although δ-
Push&Pull adopts a non-uniform node distribution, its
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Figure 7 Residual energy comparisons of each node between
non-uniform distribution and VFA.
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network lifetime is not superior to VFA by adopting the
pixel-based transmission mechanism, in which the traffic
burden caused by constant data acquisition is reduced
effectively. By importing the pixel-based transmission
mechanism and satisfying the node density for energy-
balanced depletion condition, our approach has the
smallest traffic burden in each working round, and
achieves the longest network lifetime.

7. Conclusion and future work
In this article, we focus on the problem of sensor redis-
tribution to eliminate energy hole in mobile sensor net-
works. We present a theoretical analysis of energy
attenuation in non-uniform distribution strategy, and
prove that when the pixel-based transmission mechan-
ism is adopted, a full energy balance can be achieved
through the rational node distribution density. Contri-
butively, we propose a novel non-uniform distribution
algorithm with the concept of equivalent sensing radius
to achieve energy-balanced depletion while minimizing
sensor movement. Simulation results show that our
algorithm achieves a better performance than the exist-
ing algorithms and can prolong the network lifetime
effectively.
In the future, as our study requires that each node

knows how to measure its current energy level, we plan
to implement our approach in real systems and validate
its efficiency in some potential applications such as
topology control, distributed storage, and network
health monitoring. We also intend to extend our
approach to the probabilistic sensing models and 3D
space.
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