11 research outputs found

    Experimental study of the interplay of channel and network coding in low power sensor applications

    Get PDF
    In this paper, we evaluate the performance of random linear network coding (RLNC) in low data rate indoor sensor applications operating in the ISM frequency band. We also investigate the results of its synergy with forward error correction (FEC) codes at the PHY-layer in a joint channel-network coding (JCNC) scheme. RLNC is an emerging coding technique which can be used as a packet-level erasure code, usually implemented at the network layer, which increases data reliability against channel fading and severe interference, while FEC codes are mainly used for correction of random bit errors within a received packet. The hostile wireless environment that low power sensors usually operate in, with significant interference from nearby networks, motivates us to consider a joint coding scheme and examine the applicability of RLNC as an erasure code in such a coding structure. Our analysis and experiments are performed using a custom low power sensor node, which integrates on-chip a low-power 2.4 GHz transmitter and an accelerator implementing a multi-rate convolutional code and RLNC, in a typical office environment. According to measurement results, RLNC of code rate 4/8 can provide an effective SNR improvement of about 3.4 dB, outperforming a PHY-layer FEC code of the same code rate, at a PER of 10[superscript -2]. In addition, RLNC performs very well when used in conjunction with a PHY-layer FEC code as a JCNC scheme, offering an overall coding gain of 5.6 dB.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus Cente

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay

    Energy Savings via Harnessing Partial Packets in Body Area Networks

    Get PDF
    This work considers the incorporation, implications and potential energy savings of partial packet recovery schemes in Body Area Networks (BANs). Received packets which have not been fully corrected by the physical layer, called partial, are discarded by the vast majority of BAN protocols, as opposed to valid packets, which satisfy the error detection check and are propagated to higher layers. In typical networks using ARQ protocols, dropping partial packets results in retransmissions. However, because these packets contain useful information, partial packet recovery schemes have been proposed with demonstrated throughput and reliability benefits, targeting mostly wireless LANs. In order to quantify the potential energy benefits of harnessing partial packets in BANs, we use an experimental setup with four sensors mounted on a human body, transmitting information to a receiving node in a typical office environment. By precisely modeling the state transitions and energy consumption of sensors, we compare the efficiency of a baseline ARQ protocol against a scheme which leverages information in partial packets. Our results indicate that exploiting partial packets reduces on average the energy consumption of our sensors by 8--20%. The energy savings are pronounced in challenged channel conditions of high PER, where they can be up to 50%

    Band Codes for Energy-Efficient Network Coding with Application to P2P Mobile Streaming

    Get PDF
    A key problem in random network coding (NC) lies in the complexity and energy consumption associated with the packet decoding processes, which hinder its application in mobile environments. Controlling and hence limiting such factors has always been an important but elusive research goal, since the packet degree distribution, which is the main factor driving the complexity, is altered in a non-deterministic way by the random recombinations at the network nodes. In this paper we tackle this problem proposing Band Codes (BC), a novel class of network codes specifically designed to preserve the packet degree distribution during packet encoding, ecombination and decoding. BC are random codes over GF(2) that exhibit low decoding complexity, feature limited and controlled degree distribution by construction, and hence allow to effectively apply NC even in energy-constrained scenarios. In particular, in this paper we motivate and describe our new design and provide a thorough analysis of its performance. We provide numerical simulations of the performance of BC in order to validate the analysis and assess the overhead of BC with respect to a onventional NC scheme. Moreover, peer-to-peer media streaming experiments with a random-push protocol show that BC reduce the decoding complexity by a factor of two, to a point where NC-based mobile streaming to mobile devices becomes practically feasible.Comment: To be published in IEEE Transacions on Multimedi

    Energy-aware network coding circuit and system design

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-78).Network Coding (NC) has been shown to provide several advantages in communication networks in terms of throughput, data robustness and security. However, its applicability to networks with resource constrained nodes, like Body Area Networks (BANs), has been questioned due to its complexity requirements. Proposed NC implementations are based on high-end CPUs and GPUs, consuming hundreds of Watts, without providing enough insight about its energy requirements. As more and more mobile devices, sensors and other low power systems are used in modern communication protocols, a highly efficient and optimized implementation of NC is required. In this work, an effort is made to bridge NC theory with ultra low power applications. For this reason, an energy-scalable, low power accelerator is designed in order to explore the minimum energy requirements of NC. Based on post-layout simulation results using a TSMC 65nm process, the proposed encoder consumes 22.15 uW at 0.4V, achieving a processing throughput of 80 MB/s. These numbers reveal that NC can indeed be incorporated into resource constrained networks with battery-operated or even energy scavenging nodes. Apart from the hardware design, a new partial packet recovery mechanism based on NC, called PPRNC, is proposed. PPRNC exploits information contained in partial packets, similarly to existing Hybrid-ARQ schemes, but with a PHY-agnostic approach. Minimization of the number of retransmitted packets saves transmission energy and results in higher total network throughput, making PPRNC an attractive candidate for energy constrained networks, such as BANs, as well as modern, high-speed wireless mesh networks. The proposed mechanism is analyzed and implemented using commercial development boards, validating its ability to extract information contained from partial packets.by Georgios Angelopoulos.S.M
    corecore