4,870 research outputs found

    Energy saving in distributed router architectures

    Get PDF
    A multi-stage software router overcomes scalability issues related to a single, PC-based, software router by introducing parallel forwarding paths. However, since the architecture includes different internal components, energy inefficiency at low loads may arise if the multi-stage internal architecture does not adapt to currently offered traffic. This paper presents an energy-saving scheme to improve energy efficiency of the multi-stage router architecture by focusing on the back-end stage and sizing it to the offered load to reduce energy needs. The problem is defined as a mixed integer linear programming model, shown to be NP-hard. We tackle the scalability issues of the optimal problem by defining a twostep heuristic which takes advantage of existing BIN PACKING algorithms. Our results shows that the two-step solution is within 10% relative error with respect to the optimal solution for different realistic scenario

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Quarc: a high-efficiency network on-chip architecture

    Get PDF
    The novel Quarc NoC architecture, inspired by the Spidergon scheme is introduced as a NoC architecture that is highly efficient in performing collective communication operations including broadcast and multicast. The efficiency of the Quarc architecture is achieved through balancing the traffic which is the result of the modifications applied to the topology and the routing elements of the Spidergon NoC. This paper provides an ASIC implementation of both architectures using UMCpsilas 0.13 mum CMOS technology and demonstrates an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs

    Design of TSV-sharing topologies for cost-effective 3D networks-on-chip

    Get PDF
    The Through-Silicon Via (TSV) technology has led to major breakthroughs in 3D stacking by providing higher speed and bandwidth, as well as lower power dissipation for the inter-layer communication. However, the current TSV fabrication suffers from a considerable area footprint and yield loss. Thus, it is necessary to restrict the number of TSVs in order to design cost-effective 3D on-chip networks. This critical issue can be addressed by clustering the network such that all of the routers within each cluster share a single TSV pillar for the vertical packet transmission. In some of the existing topologies, additional cluster routers are augmented into the mesh structure to handle the shared TSVs. However, they impose either performance degradation or power/area overhead to the system. Furthermore, the resulting architecture is no longer a mesh. In this paper, we redefine the clusters by replacing some routers in the mesh with the cluster routers, such that the mesh structure is preserved. The simulation results demonstrate a better equilibrium between performance and cost, using the proposed models

    Quarc: a novel network-on-chip architecture

    Get PDF
    This paper introduces the Quarc NoC, a novel NoC architecture inspired by the Spidergon NoC. The Quarc scheme significantly outperforms the Spidergon NoC through balancing the traffic which is the result of the modifications applied to the topology and the routing elements.The proposed architecture is highly efficient in performing collective communication operations including broadcast and multicast. We present the topology, routing discipline and switch architecture for the Quarc NoC and demonstrate the performance with the results obtained from discrete event simulations

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast
    • 

    corecore