2,526 research outputs found

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    On optimizing power allocation for reliable communication over fading channels with uninformed transmitter

    Get PDF
    We investigate energy efficient packet scheduling and power allocation problem for the services which require reliable communication to guarantee a certain quality of experience (QoE). We establish links between average transmit power and reliability of data transfer, which depends on both average amount of data transfer and short term rate guarantees. We consider a slow-fading point-to-point channel without channel state information at the transmitter side (CSIT). In the absence of CSIT, the slow fading channel has an outage probability associated with every transmit power. As a function of data loss tolerance parameters, and minimum rate and peak power constraints, we formulate an optimization problem that adapts rate and power to minimize the average transmit power for the user equipment (UE). Then, a relaxed optimization problem is formulated where transmission rate is assumed to be fixed for each packet transmission. We use Markov chain to model constraints of the optimization problem. The corresponding problem is not convex for both of the formulated problems, therefore a stochastic optimization technique, namely the simulated annealing algorithm, is used to solve them. The numerical results quantify the effect of various system parameters on average transmit power and show significant energy savings when the service has less stringent requirements on timely and reliable communication

    Energy and bursty packet loss tradeoff over fading channels: a system-level model

    Get PDF
    Energy efficiency and quality of service (QoS) guarantees are the key design goals for the 5G wireless communication systems. In this context, we discuss a multiuser scheduling scheme over fading channels for loss tolerant applications. The loss tolerance of the application is characterized in terms of different parameters that contribute to quality of experience (QoE) for the application. The mobile users are scheduled opportunistically such that a minimum QoS is guaranteed. We propose an opportunistic scheduling scheme and address the cross-layer design framework when channel state information (CSI) is not perfectly available at the transmitter and the receiver. We characterize the system energy as a function of different QoS and channel state estimation error parameters. The optimization problem is formulated using Markov chain framework and solved using stochastic optimization techniques. The results demonstrate that the parameters characterizing the packet loss are tightly coupled and relaxation of one parameter does not benefit the system much if the other constraints are tight. We evaluate the energy-performance tradeoff numerically and show the effect of channel uncertainty on the packet scheduler design
    • …
    corecore