8 research outputs found

    Cooperative Energy Trading in CoMP Systems Powered by Smart Grids

    Full text link
    This paper studies the energy management in the coordinated multi-point (CoMP) systems powered by smart grids, where each base station (BS) with local renewable energy generation is allowed to implement the two-way energy trading with the grid. Due to the uneven renewable energy supply and communication energy demand over distributed BSs as well as the difference in the prices for their buying/selling energy from/to the gird, it is beneficial for the cooperative BSs to jointly manage their energy trading with the grid and energy consumption in CoMP based communication for reducing the total energy cost. Specifically, we consider the downlink transmission in one CoMP cluster by jointly optimizing the BSs' purchased/sold energy units from/to the grid and their cooperative transmit precoding, so as to minimize the total energy cost subject to the given quality of service (QoS) constraints for the users. First, we obtain the optimal solution to this problem by developing an algorithm based on techniques from convex optimization and the uplink-downlink duality. Next, we propose a sub-optimal solution of lower complexity than the optimal solution, where zero-forcing (ZF) based precoding is implemented at the BSs. Finally, through extensive simulations, we show the performance gain achieved by our proposed joint energy trading and communication cooperation schemes in terms of energy cost reduction, as compared to conventional schemes that separately design communication cooperation and energy trading

    A Novel Energy Model for Renewable Energy-Enabled Cellular Networks Providing Ancillary Services to the Smart Grid

    Get PDF
    In this paper, we consider cellular networks powered by the smart grid (SG) and by local renewable energy (RE) sources. While this configuration promises energy savings, usage of cleaner energy, and cost reduction, it has some intrinsic complexity due to the interaction between the network operators and the SG. Motivated by the significant advancement in the SG, we consider the case where cellular networks provide the SG with ancillary services by replying to the grid's explicit requests to increase or decrease their grid consumption. We propose a new approach for configuring and operating base stations (BSs) to provide ancillary services. Based on real data, we model the energy state of a BS as a Markov chain taking into account the proposed energy management policy, randomness of SG requests, and RE generation. We use the model to evaluate the performance of the system, and to decide proper settings of its parameters in order to minimize the energy operational cost. The performance of our proposal is then compared against those of other approaches. Results show that important cost savings, with negligible degradation in quality of service, are possible when RE generation, SG patterns, and storage sizes are properly taken into account

    Energy efficient planning and operation models for wireless cellular networks

    Get PDF
    Prospective demands of next-generation wireless networks are ambitious and will require cellular networks to support 1000 times higher data rates and 10 times lower round-trip latency. While this data deluge is a natural outcome of the increasing number of mobile devices with data hungry applications and the internet of things (IoT), the low latency demand is required by the future interactive applications such as tactile internet , virtual and enhanced reality, and online internet gaming, etc. The motivation behind this thesis is to meet the increasing quality of service (QoS) demands in wireless communications and reduce the global carbon footprint at the same time. To achieve these goals, energy efficient planning and operations models for wireless cellular networks are proposed and analyzed. Firstly, a solution based on the overlay cognitive radio (CR) along with cooperative relaying is proposed to reduce the effect of the scarcity problem of the radio spectrum. In overlay technique, the primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. The achievable cognitive rate of two-way relaying (TWR) system assisted by multiple antennas is proposed. Compared to traditional relaying where the transmission to exchange two different messages between two sources takes place in four time slots, using TWR, the required number of transmission slots reduces to two slots. In the first slot, both sources transmit their signals simultaneously to the relay. Then, during the second slot the relay broadcasts its signal to the sources. Using an overlay CR technique, the CUs are allowed to allocate part of the PUs\u27 spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward (AF) TWR, the CUs are exploited to support PUs to reach their target data rates over the remaining bandwidth. A meta-heuristic approach based on particle swarm optimization algorithm is proposed to find a near optimal resource allocation in addition to the relay amplification matrix gains. Then, we investigate a multiple relay selection scheme for energy harvesting (EH)-based on TWR system. All the relays are considered as EH nodes that harvest energy from renewable and radio frequency sources, where the relays forward the information to the sources. The power-splitting protocol, in which the receiver splits the input radio frequency signal into two components: one for information transmission and the other for energy harvesting, is adopted at the relay side. An approximate optimization framework based on geometric programming is established in a convex form to find near optimal PS ratios, the relays’ transmission power, and the selected relays in order to maximize the total rate utility over multiple time slots. Different utility metrics are considered and analyzed depending on the level of fairness. Secondly, a downlink resource and energy management approach for heterogeneous networks (HetNets) is proposed, where all base stations (BSs) are equipped to harvest energy from renewable energy (RE) sources. A hybrid power supply of green (renewable) and traditional micro-grid, such that the traditional micro-grid is not exploited as long as the BSs can meet their power demands from harvested and stored green energy. Furthermore, a dynamic BS switching ON/OFF combined with the EH model, where some BSs are turned off due to the low traffic periods and their stored energy in order to harvest more energy and help efficiently during the high traffic periods. A binary linear programming (BLP) optimization problem is formulated and solved optimally to minimize the network-wide energy consumption subject to users\u27 certain quality of service and BSs\u27 power consumption constraints. Moreover, green communication algorithms are implemented to solve the problem with low complexity time. Lastly, an energy management framework for cellular HetNets supported by dynamic drone small cells is proposed. A three-tier HetNet composed of a macrocell BS, micro cell BSs (MBSs), and solar powered drone small cell BSs are deployed to serve the networks\u27 subscribers. In addition to the RE, the drones can power their batteries via a charging station located at the macrocell BS site. Pre-planned locations are identified by the mobile operator for possible drones\u27 placement. The objective of this framework is to jointly determine the optimal locations of the drones in addition to the MBSs that can be safely turned off in order to minimize the daily energy consumption of the network. The framework takes also into account the cells\u27 capacities and the QoS level defined by the minimum required receiving power. A BLP problem is formulated to optimally determine the network status during a time-slotted horizon

    Energy management strategies for base stations powered by the smart grid

    No full text

    Online energy management strategies for base stations powered by the smart grid

    No full text
    10.1109/SmartGridComm.2013.66879572013 IEEE International Conference on Smart Grid Communications, SmartGridComm 2013199-20

    Green Mobile Networks: from self-sustainability to enhanced interaction with the Smart Grid

    Get PDF
    Nowadays, the staggering increase of the mobile traffic is leading to the deployment of denser and denser cellular access networks, hence Mobile Operators are facing huge operational cost due to power supply. Therefore, several research efforts are devoted to make mobile networks more energy efficient, with the twofold objective of reducing costs and improving sustainability. To this aim, Resource on Demand (RoD) strategies are often implemented in Mobile Networks to reduce the energy consumption, by dynamically adapting the available radio resources to the varying user demand. In addition, renewable energy sources are widely adopted to power base stations (BSs), making the mobile network more independent from the electric grid. At the same time, the Smart Grid (SG) paradigm is deeply changing the energy market, envisioning an active interaction between the grid and its customers. Demand Response (DR) policies are extensively deployed by the utility operator, with the purpose of coping with the mismatches between electricity demand and supply. The SG operator may enforce its users to shift their demand from high peak to low peak periods, by providing monetary incentives, in order to leverage the energy demand profiles. In this scenario, Mobile Operators can play a central role, since they can significantly contribute to DR objectives by dynamically modulating their demand in accordance with the SG requests, thus obtaining important electricity cost reductions. The contribution of this thesis consists in investigating various critical issues raised by the introduction of photovoltaic (PV) panels to power the BSs and to enhance the interaction with the Smart Grid, with the main objectives of making the mobile access network more independent from the grid and reducing the energy bill. When PV panels are employed to power mobile networks, simple and reliable Renewable Energy (RE) production models are needed to facilitate the system design and dimensioning, also in view of the intermittent nature of solar energy production. A simple stochastic model is hence proposed, where RE production is represented by a shape function multiplied by a random variable, characterized by a location dependent mean value and a variance. Our model results representative of RE production in locations with low intra-day weather variability. Simulations reveal also the relevance of RE production variability: for fixed mean production, higher values of the variance imply a reduced BS self-sufficiency, and larger PV panels are hence required. Moreover, properly designed models are required to accurately represent the complex operation of a mobile access network powered by renewable energy sources and equipped with some storage to harvest energy for future usage, where electric loads vary with the traffic demand, and some interaction with the Smart Grid can be envisioned. In this work various stochastic models based on discrete time Markov chains are designed, each featuring different characteristics, which depend on the various aspects of the system operation they aim to examine. We also analyze the effects of quantization of the parameters defined in these models, i.e. time, weather, and energy storage, when they are applied for power system dimensioning. Proper settings allowing to build an accurate model are derived for time granularity, discretization of the weather conditions, and energy storage quantization. Clearly, the introduction of RE to power mobile networks entails a proper system dimensioning, in order to balance the solar energy intermittent production, the traffic demand variability and the need for service continuity. This study investigates via simulation the RE system dimensioning in a mobile access network, trading off energy self-sufficiency targets and cost and feasibility constraints. In addition, to overcome the computational complexity and long computational time of simulation or optimization methods typically used to dimension the system, a simple analytical formula is derived, based on a Markovian model, for properly sizing a renewable system in a green mobile network, based on the local RE production average profile and variability, in order to guarantee the satisfaction of a target maximum value of the storage depletion probability. Furthermore, in a green mobile network scenario, Mobile Operators are encouraged to deploy strategies allowing to further increase the energy efficiency and reduce costs. This study aims at analyzing the impact of RoD strategies on energy saving and cost reduction in green mobile networks. Up to almost 40% of energy can be saved when RoD is applied under proper configuration settings, with a higher impact observed in traffic scenarios in which there is a better match between communication service demand and RE production. While a feasible PV panel and storage dimensioning can be achieved only with high costs and large powering systems, by slightly relaxing the constraint on self-sustainability it is possible to significantly reduce the size of the required PV panels, up to more than 40%, along with a reduction in the corresponding capital and operational expenditures. Finally, the introduction of RE in mobile networks contributes to give mobile operators the opportunity of becoming prominent stakeholders in the Smart Grid environment. In relation to the integration of the green network in a DR framework, this study proposes different energy management policies aiming at enhancing the interaction of the mobile network with the SG, both in terms of energy bill reduction and increased capability of providing ancillary services. Besides combining the possible presence of a local RE system with the application of RoD strategies, the proposed energy management strategies envision the implementation of WiFi offloading (WO) techniques in order to better react to the SG requests. Indeed, some of the mobile traffic can be migrated to neighbor Access Points (APs), in order to accomplish the requests of decreasing the consumption from the grid. The scenario is investigated either through a Markovian model or via simulation. Our results show that these energy management policies are highly effective in reducing the operational cost by up to more than 100% under proper setting of operational parameters, even providing positive revenues. In addition, WO alone results more effective than RoD in enhancing the capability to provide ancillary services even in absence of RE, raising the probability of accomplishing requests of increasing the grid consumption up to almost 75% in our scenario, twice the value obtained under RoD. Our results confirm that a good (in terms of energy bill reduction) energy management strategy does not operate by reducing the total grid consumption, but by timely increasing or decreasing the grid consumption when required by the SG. This work shows that the introduction of RE sources is an effective and feasible solution to power mobile networks, and it opens the way to new interesting scenarios, where Mobile Network Operators can profitably interact with the Smart Grid to obtain mutual benefits, although this definitely requires the integration of suitable energy management strategies into the communication infrastructure management
    corecore