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A Novel Energy Model for Renewable

Energy-Enabled Cellular Networks Providing

Ancillary Services to the Smart Grid
Hussein Al Haj Hassan, Daniela Renga, Michela Meo and Loutfi Nuaymi

Abstract

In this paper, we consider cellular networks powered by the Smart Grid (SG) and by local renewable energy (RE)

sources. While this configuration promises energy savings, usage of cleaner energy and cost reduction, it has some

intrinsic complexity due to the interaction between the network operators and the SG. Motivated by the significant

advancement in the SG, we consider the case where cellular networks provide the SG with ancillary services by

replying to the grid’s explicit requests to increase or decrease their consumption. We propose a new approach for

configuring and operating base stations (BSs) to provide ancillary services. Based on real data, we model the energy

state of a BS as a Markov chain taking into account the proposed energy management policy, randomness of SG

requests and RE generation. We use the model to evaluate the performance of the system, and to decide proper

settings of its parameters in order to minimize the energy operational cost. The performance of our proposal is then

compared against those of other approaches. Results show that important cost savings, with negligible degradation in

quality of service, are possible when RE generation, SG patterns and storage sizes are properly taken into account.

Index Terms

Future Cellular Networks, Markov Chains, Renewable Energy, Smart Grid, Energy Model

I. INTRODUCTION

In the last decades, energy performance has become one of the key research and innovation topics in any

industrial field. Among the fast growing industries a relevant role is played by the Information and Communications

Technology (ICT). From one perspective, ICT has substantially contributed in the advancement of existing industries

and development of new concepts. From another perspective, ICT industry is responsible for significant percentage

of the green house gas emissions (GHGE). According to [1], the relative contribution of ICT’s GHGE could grow

H. Al Haj Hassan is with American University of Science and Technology, Beirut, Lebanon - Email: hhajhassan@aust.edu.lb

D. Renga and M. Meo are with Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni, Corso Duca degli Abruzzi 24, 10129
Torino, Italy - Email: name.surname@polito.it.

L. Nuaymi is with IMT-Atlantique, 2 Rue de la Chataigneraie, 35576 Cesson SevignÃl’, France - Email: loutfi.nuaymi@imt-atlantique.fr.



IEEE TRANSACTIONS ON GREEN COMMUNICATION AND NETWORKING 2

from roughly 1.6% in 2007 to exceed 14% of the 2016-level worldwide GHGE by 2040, which is equivalent for

more than half of the current relative contribution of transportation sector.

Furthermore, the ICT industry is experiencing significant growing in its energy consumption which is about

7% growth rate per year [2]. Fueled by the exponential increase in mobile traffic, the strongest growth is being

observed in communication networks for about 10% per year. This number is expected to further increase due to the

continuous increase in the users’ traffic. For example, it is forecast that the global mobile data traffic will witness

an increase of seven-fold between 2016 and 2021 [3]. To satisfy users’ demand, the fifth generation (5G) wireless

system is under intensive development of base stations (BSs) [4]. This increase in the number of BSs imposes

serious concerns about the sustainability of the networks in the future and the growth of the energy cost that can

reach more than 32% of the operational expenditure [5]. This observation prompted the creation of a new direction

in the domain of cellular network energy research: the use of renewable energy (RE) to power BSs [6]. In contrast

to off-grid BSs, in which RE is used to sustain and provide service continuity, the use of RE to power on-grid

BSs targets to several objectives, among which reducing grid energy consumption, reducing Carbon emissions, and

reducing the electric bill [6].

Meanwhile, significant efforts are put in the evolution of the power grid into a smarter one - the Smart Grid

(SG) [7]. The recent development in the SG allows customers to make more informed decisions in their energy

management [8], which is translated into reduction of the customers’ energy cost and Carbon emissions. There

exist several ways for the grid customers to interact with the SG. This depends on the size of the customer’s

energy consumption as well as the chosen program (e.g. real time pricing or providing ancillary services). In this

work, we consider cellular networks that are willing to provide the grid with ancillary services. Every day, the SG

Transmission System Operator predicts the total energy demand of the next day based on weather forecast, historical

data and demand of high consumers (e.g., those that consume more than 1 MW) [9]. Then, it organizes an auction

between the providers and retailers to fix the electricity price for each hour of the next day. Consumers can buy

energy at lower price, with respect to traditional dynamic tariff programs, as a reward for the information about

their expected energy demand. Next day (focus of this paper), additional trades are done to compensate the errors of

the energy demand prediction done in the previous day. Among these trades, some are made in advance, just 15 to

30 minutes before the tariff applies. These trades are known as Ancillary Services [10]. The SG explicitly requests

customers (willing to provide ancillary services) to adapt their consumption to the grid’s conditions. Customers (BS

in our case) reply to the grid requests and provide ancillary services by increasing the energy consumption if the

request is of type up and decreasing their energy consumption if the request is of type down.

For a mobile operator, the deployment of on-site renewable energy sources (RESs) and energy storage units

co-located with the BSs promotes the operator to be a suitable candidate to provide ancillary services. However,

new challenges rise due to the dynamism of the SG and the intermittent generation of RE [6]. In this paper, we
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consider a mobile operator willing to provide the SG with ancillary services through its access network. BSs are

powered by the SG and equipped with local RE sources and energy storage units. The harvested RE and energy

storage are used by the mobile operator to reply to the SG requests by adjusting the grid energy consumption of the

network, and thus provide the SG with ancillary services. Although a BS has relatively small energy demand, the

aggregated energy demand of a mobile network can be significant due to the large number of BSs. However, each

BS may experience different conditions such as different RE generation and availability. The amount and profile

of RE generation change depending on the weather and location of the BS. Moreover, the same BS can experience

different conditions from day to day. In our previous work, [11], [12] we considered the case in which the operator,

in order to further respond to the SG requests, can switch on and off the BSs. In this paper, instead, we focus on a

scenario in which, in order to further adjust the mobile network energy consumption, Radio Resource Management

(RRM) techniques are used at the individual BSs. While BS management can be quite effective, in several scenarios

switching off the BSs is not possible due to the risk of coverage holes. In these cases, RRM can be used at the

BSs to respond to the SG requests. We model the energy state of the BS as a multi-dimensional Markov chain, for

which its transition probabilities are calculated based on the stochastic models of RE production and SG request

patterns as well as the adopted energy management policy. Then, the model is numerically solved to choose proper

settings of the parameters and thresholds of the energy policy with the objective of minimizing the net operational

cost. The large number of states and possible transitions from one state to another, which is also affected by the

large number of possible thresholds, increases the complexity of finding a closed form solution and studying it

analytically.

The rest of the paper is structured as follows. Section II presents the related work. We describe the model of

the renewable powered BS operation in Section III. The modeling of the SG operation and the energy management

strategy implemented by the green BS to react to the SG requests are detailed in Section IV. The Markovian model

deployed to represent the entire system operation is presented in Section V, whereas the performance indicators

are defined in Section VI. Section VII presents the obtained results before concluding in Section VIII.

II. RELATED WORK AND CONTRIBUTION

Cellular networks have succeeded in responding to the demand of various types of users; spectrum efficiency as

well as quality of service have been well optimized to meet the requirements of users. However, the increase of the

traffic was accompanied by an increase in the energy demand. The latter challenges the operators to reduce their

energy consumption. Consequently, several techniques were proposed to increase the energy efficiency of cellular

networks, such as radio resource management (RRM), cell layout adaptation, heterogeneous deployment, cognitive

radio, etc. [13]. In addition, network operators started to explicitly consider the use of RE sources in powering their

BSs [6]. The two approaches are complementary as it is easier to power BSs with RE if they have lower energy

footprint.
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There exist many studies that tackles the problem of energy efficiency in cellular network including the use of

RE, see [6], [14], [15]. However, the evolution of the power grid into a smarter one, the Smart Grid [7], imposes

new research problems in the domain of "energy efficient cellular network" from economic and environmental

perspectives. In this context, each of the existing approach considers the SG from a different perspective.

For example, several studies consider the SG as the main energy provider that informs the cellular networks

with the energy price and its variation, i.e. dynamic tariff of electricity. In this context, the authors of [16] study

adaptive power management for wireless BSs powered by local RE sources and the SG. The aim is to minimize

the cost of energy by managing the energy resources in a variable energy price environment. Similarly, the study

done in [17] considers the problem of minimizing the electricity bill for a cellular BS powered by the SG and

locally harvested RE with hourly-varying electricity prices known a day ahead. The study in [18] considers the

problem of minimizing the on-grid energy cost of a heterogeneous cellular network with BSs powered by RE and

the SG, while considering real-time pricing of grid energy. The problem of minimizing the on-grid energy cost is

studied for a single BS equipped with RES under variable electricity price in [19]. Delaying data as well as battery

management are used to reduce the energy demand when the price of electricity is high. In [20], the authors study

the minimization of cost in space-time varying electricity price. In contrast to previously mentioned studies, the

authors consider a centralized RE farm to power the BS in a geographic area. A micro-grid of BSs, RES and energy

storage is considered in [21]. BS ON/OFF switching and energy management are used to reduce the energy cost

considering variable traffic load and price of grid energy.

Another perspective is using the SG for energy sharing between base stations. For example, the authors investigate

energy sharing in the context of Smart Grid-enabled mobile networks, where RE is generated at each BS and can

be shared with other BSs in [22]. By jointly optimizing the operation of BSs and distribution of power, the network

achieves about 18% on-grid power savings. In [23], the authors use energy sharing and load shifting to minimize

the grid energy expenditure of cellular networks powered by both grid and RE. The authors proposed a three-phase

distributed control policy, where base stations and mobile users adjust their strategies independently only with their

local information. In [24], the authors proposed a hybrid energy sharing framework for cellular network where

physical power lines and energy trading with other BSs using SG are used. The energy management framework

determines the quantities of electricity and RE to be procured and exchanged among BSs, respectively, while

considering battery capacities and real-time energy pricing.

Furthermore, some studies consider the SG as a platform for interaction with several energy retailers. In [25], the

authors aim at maximizing the profit of LTE cellular operators while minimizing the CO2 emissions. The study uses

BSs switch ON/OFF and optimizes the amount of energy procured from different retailers. In [26], BS switching

on/off mechanism and an energy management policy are employed. The study investigates the interactions between

multiple mobile operators and energy retailers with a number of renewable sources. The goal is to maximize the
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profits of collaborative mobile operators, achieving environmental goals and introducing more fairness among mobile

operators in the procurement decision.

These approaches succeed in reducing the energy cost and/or Carbon footprint of cellular networks. However,

they mainly consider the interests of the cellular network operators. In the context of SG, there exist another forms

of energy trading with the SG. For example, some are made in advance, just 15 to 30 minutes before the tariff

applies. These trades are known as Ancillary Services [10]. In short, ancillary services are trades of energy that are

performed by the customers by increasing or decreasing their grid energy consumption to answer explicit requests

of the SG. Ancillary services aim at reducing the short term imbalance between the SG demand and supply, and

special incentives are provided for those who participate in providing them.

A. Contributions

Providing ancillary services have been widely investigated in the case of industrial, household, Heating, Ventilation

and Air Conditioning (HVAC) loads and with electric vehicles in Vehicular-to-Grid (V2G) scenarios [27], [28]. On

the contrary, in the telecommunications field, this context has been studied mainly in Data Centers [29], [30],

whereas its application is rarely considered in mobile access networks. To the best of our knowledge, our study in

[31] was the first to consider the problem of a base station that adapts its energy consumption to reply to the SG

requests and provides ancillary services. In that work, RE sources and energy storage are used to provide the SG

with ancillary services. On the one hand, BSs use RE and the storage to reply to the SG requests and help the grid

in matching the energy demand-supply. On the other hand, the SG pays in return for these services, which will

minimize the energy cost of the network. The proposed approach is limited to a heuristic algorithm. Moreover, the

proposed algorithm uses fixed parameters. In [12], we consider the case of a mobile network that provides the SG

with ancillary services. A Markovian model is proposed to model the energy state of the network. The network uses

energy storage, RE as well as base station switching ON/OFF to reply to the SG’s requests and provide ancillary

services. In [32], [33], stochastic models are proposed to analyze the impact of parameter quantization on the model

performance. Moreover, WiFi offloading are used to enhance the interaction with the SG.

In this paper, we investigate a renewable energy-powered base station that is actively interacting with the SG and

that implements an energy management policy to react to the SG periodical requests of increasing or decreasing its

grid energy consumption. To this aim, the base station can exploit the locally produced RE and the energy storage.

Furthermore, radio resources can be deactivated to decrease the base station consumption when requested by the

SG. In addition, the effect of weather condition variability on the SG request patterns is taken into account in the

system model. The main contributions of the paper are:

• We study the performance of a renewable-powered base station that is providing ancillary services to the SG.

An energy management policy is proposed to answer the SG requests and reduce the network’s operational
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cost. Moreover, the BS energy state is modeled as a Markov Chain considering the proposed energy policy

and randomness of RE generation and SG requests.

• We consider real data for both RE and SG requests. In contrast to previous work such as [12], [32], [33], since

the daily weather conditions may affect not only the variability of the RE production but also the SG request

patterns, we investigate the correlation between historical data of SG requests and the meteorological data, by

analyzing the temperature variation throughout a year. We find that the SG requests (Up, Down, Null) can

be categorized as 5 patterns that identify various daytypes, corresponding to different SG request probability

distributions, depending on weather conditions.

• The proposed approach works at the level of a BS, which allows to take into account the specificity of each

base station in terms of RE sources size, storage capacity, weather condition and allow obtaining different

operational parameters for each base station.

• In contrast to [12], that uses switching off base stations, this paper considers radio resource management

algorithm by deactivating some of the resource blocks. This is motivated by the fact that switching off base

station may lead to coverage holes and may not be scalable considering large networks.

• The proposed Markovian model allows to compute several performance indicators such as RE utilization,

energy storage state, percentage of replying to the SG, amount of energy used in providing ancillary service,

Quality of Service (QoS) degradation and net operational cost. The proposed model also allows to choose the

proper settings of the energy policy used to operate the BS.

• The proposed model can be used to choose the proper size of RE generators as well as the storage while

considering the operation of the BS providing ancillary services to the SG. Although this paper does not focus

on the sizing procedure, results presented in Section VII are presented for different RE sources and storage

sizes.

• The performance of the energy policy operating under proper settings is compared with other algorithms.

Table I presents the notation used in the rest of the paper.

III. MODELING THE GREEN BASE STATION OPERATION

In this paper, we construct a Markovian model of a base station equipped with RE and storage and providing

ancillary service to the SG. In this section, we explain the models of parameters and components of the BS used

to construct the Markovian model, which is presented in Section V. We present the power consumption model of

the base station. Moreover, we explain the adopted radio resource management (RRM) strategy and the approach

used to evaluate the quality of service (QoS) degradation when applying the strategy.

A. Base station power consumption model
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TABLE I
NOTATIONS.

Time slot duration T
Number of RE generation levels N

Discrete random variable representing generated RE in time slot i G
Probability associated to the value of generated RE Gk pk

Step between Gk and Gk+1 α
Power demand of BS without RRM algorithm µ

Power demand of BS with RRM algorithm µD
Storage capacity Smax

Number of storage levels Ns
Discrete variable representing storage level at a generic time slot i s

Step between sj and sj+1 δs
Smart Grid request r

Smart Grid request Up U
Smart Grid request Down D
Smart Grid request Null N

Storage threshold during Smart Grid request Up thU
Amount of energy taken from the grid

and stored to respond to the grid Up request A
Storage threshold during Smart Grid request Down thD

State of the Markov chain defined as (s,r) x
Steady state probability of state x p(x)

We consider the well-known EARTH model to compute the base station power demand [34]. The power demand

(input power), Pin, consists of a static part P0 and a load dependent part related to the base station transmitted

power PT . The input power also depends on the number of active resource blocks,

Pin = Ntrx · (P0 +
n

nmax
· ∆P · PT ), (1)

where Ntrx is the number of transceiver chains of BS, n is the number of active resource blocks, nmax is the

maximum number of available resource blocks and ∆P is the slope of the load dependent power part.

B. RRM strategy and QoS

In this work, we use activating/deactivating radio resources as the radio resource management strategy. We

consider that the base station is responsible of serving several types of users having different QoS constraints as in

our previous work [35]. We use the unified sigmoid function, proposed in [36], as the utility function to estimate

the user satisfaction as function of the achieved bit rate. This utility is suitable for studying users’ satisfaction with

different QoS requirements. The Sigmoid function is expressed as:

u(r) =
1

α + βe−λ(r−R0)
+ γ, (2)

where r represents the allocated resources, corresponding in our study to the achieved user bit rate. R0 is the resource

requirement (required bitrate) of the user and represents the point of inflexion. α, β, λ and γ are pre-determined

parameters to determine the shape of the utility function depending on the type of traffic. Figure 1 presents an

example of utility functions for different types of traffic. As seen in the figure, the increase in the resource (bitrate
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Fig. 1. Example of utility functions for different type of traffics, where BE, SQ and HQ stand for best effort, soft-quality and hard-quality.
(λBE = 0.00001, β = 2.333, λHQ = 0.01, λSQ = 0.00001, R0 = 500000bit/sec).

in our case) has different impact on the user’s utility depending on the type of the user (BE: best effort, SQ: soft

quality, HQ: Hard quality). For example, HQ user, such as Voice, needs a specified amount of resources to maintain

their requirements. Allocating more resources for SQ traffic increases its utility until certain limit. BE traffic does

not have specified amount of needed resources (R0 = 0).

The defined utility is in terms of the user rate. We calculate the bit rate of a user based on 3GPP TR 36.942 [37].

The rate is calculated as follows. The received signal power, Pr , to a user from a base station with transmitting

power, Pt , is:

Pr = 10log10(Pt · 1000) − (Lo − GT − GR) [dBm], (3)

where Lo is the path loss computed using Cost 231 extended Hata model as in [37], GT and GR are respectively

the gain of the transmitter and receiver. The detected signal-to-noise (SNR) ratio is computed as:

SNR = Pr − N [dB], (4)

where N is the thermal noise power expressed by:

N = 10log10(1000 · KT0 · BW) + NF [dBm], (5)

where KT0 is the thermal density noise, BW is the user’s allocated bandwidth, and NF is the noise figure. Using

the calculated SNR and the number of allocated resource blocks, the user rate is calculated based on [37].

We consider that the BS is transmitting at a fixed power. This will eliminate the possibility of coverage holes

in the network. Thus, the number of activated radio resource blocks determines the level of satisfaction of users.

The number of activated resource blocks is a tradeoff between the user satisfactions and power demand of the BS.

In [35], we studied this tradeoff as a weighted sum of user satisfaction (based on the utility function) and power

demand of the BS. In this work, we use a heuristic algorithm that determines the number of active radio resource

blocks nact when RRM is applied by the energy strategy presented in Section IV-B; under no RRM policy, all the
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resources will be activated. The number of active resource blocks when RRM is applied is computed as follows:

nact =
⌈
nmax ·

T I
T Imax

⌉
, (6)

where dae is the smallest integer larger or equal to a and T I represents the traffic intensity with a maximum of

T Imax . The QoS degradation of a user is calculated as the ratio of user’s utility when RRM is applied, URRM , to

the utility when no RRM is applied, Ure f . The QoS degradation is calculated following: QoSdeg =
URRM

Ure f
.

C. Modeling renewable energy generation and energy storage

The RE generation varies depending on the type of generator and on several factors such as the weather, location

and period of year. Our model describes the evolution of the system in discrete-time, the time step has duration

T . The amount of RE that is generated in a time slot i is represented by a discrete random variable G whose

probability mass function is drawn according to the harvesting profile. A similar model is considered in [38].

Although the energy harvesting process has time-varying statistics, for simplicity we assume that the amounts

of generated energy in different time slots are independent. The generated energy is discretized in N levels. In a

time slot, an amount of energy Gk [Wh] is generated with probability pk , with k = 1, · · · , N and
∑N

k=1 pk = 1.

Levels are in ascendant order, so that Gk < G j if k < j. The maximum amount of energy generated in a time slot

is denoted by Gmax . N is computed by N = dGmax

α e, where α represents the chosen step between Gk and Gk+1.

Clearly, increasing N leads to a more accurate, yet more complex, model. When RE sources are not available at

the BS site, the generated energy is 0, so G0 = 0.

In RE powered systems, the use of energy storage is important due to the intermittent energy generation of

renewable sources. Energy storage is typically employed to store excess RE and compensate its unavailability that

is quite frequent such as during nights in case of solar energy. In addition, we use the energy storage to help the

BS to reply to the SG and provide ancillary services. During request of type Down, the previously stored energy

can be used to reduce the energy demand from the grid and thus to reply to the SG request. During request of type

Up, the energy storage is used to harvest excess grid energy (higer than BS demand) to reply to the grid request,

which can be also used later during requests of type Down. Moreover, generated RE is stored in case of Up request

to avoid wastage of RE, since RE cannot be used; otherwise, the grid energy consumed by the base station would

decrease, thus leading to penalty due to violation of the grid request.

The maximum amount of energy that can be stored, that is the storage capacity, is denoted by Smax . To represent

the amount of stored energy, we discretize the energy storage into identical levels. The number of levels Ns depends

on Smax and on the difference between two consecutive levels, δs . Hence, Ns =
Smax

δs
+ 1. The choice of δs is

a trade-off between the model complexity and accuracy. On the one hand, a large δs leads to a small number of

storage levels but higher discretization errors. On the other hand, choosing a small value of δs leads to a large
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number of storage levels but a higher accuracy in modeling the system. The storage level in a given time slot is

denoted by s. Note that charging and discharging losses are not considered in this work.

IV. MODELING THE INTERACTION WITH THE SMART GRID

We now present how we model the operation of the SG performing its Demand Response policy. Moreover, we

describe the energy management strategy implemented by the BS to interact with the SG.

A. Modeling the Smart Grid operation

In the SG, if excess energy is available, the grid requests to its customers (willing to provide ancillary services),

and hence to the BSs, to increase their grid energy consumption; the SG issues a request indicated by Up. If the

demand is higher than the generated energy, the grid requests to decrease the grid energy consumption, the request

is of type Down. Otherwise, the grid does not request any change in the energy consumption, and this is denoted

by a Null request. Ancillary services are provided by customers (BSs in our case) to reply to the grid request.

This is done by increasing the grid energy consumption when the request is Up and decreasing the grid energy

consumption when the request is Down. The ancillary services markets are country-dependent and a review of these

markets designs is available in [39]. The terms request Up and request Down, that we use in the paper, correspond

to regulation Down and regulation Up, respectively, in the SG nomenclature.

To study the statistics of the SG requests and represent them with a stochastic model, we analyze real data (an

SG request every time step of 30 min) provided by the RTE [40], which owns the main French energy transmission

network. Based on the data, the SG request may change from any state to another or stay in the same state for more

than one time step. Figure 2 shows the average monthly percentage of each state of the SG. Being the production

and consumption very dynamic, the state Null represents a small percentage of the cases: its average does not

exceed 10%. There are some seasonal variations: the state of Down is more than 70% of the requests in November

and December, while it is less than 40% in April, when the highest percentage of state is Up (58%). Taking an

overall average, the state Down is the most frequent one, with 53% of occurrences, while Up occurs 42% of the

times.

Energy Consumption of SG customers is strongly related to weather (e.g., due to the need for heating and cooling).

However, the SG request (UP or Down) is related to the error of energy demand prediction verified the next day.

Knowing that weather and historical data are among the most used parameters in predicting energy consumption

[42], we study the relation between SG requests and weather (temperature) by investigating real data for one year

of SG requests, corresponding weather (for the same dates of SG requests data) and historical weather. Figure 3

presents the average daily temperature for the studied year in France.

From the analysis of the SG data provided by RTE and the weather history, we define the general weather, which

corresponds to the average temperature of a day calculated from historical meteorological data. We consider the
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Fig. 2. Average monthly percentage of each state of the SG.

Fig. 3. Temperature variation throughout the year in France [41].
Legends: The daily low (blue) and high (red) temperature with the area between them shaded gray and superimposed over the corresponding
averages (thick lines), and with percentile bands (inner band from 25th to 75th percentile, outer band from 10th to 90th percentile).

general weather as cold, average or hot if the average temperature is respectively below 10◦C, between 10◦C and

15◦C, and more than 15◦C. For each day, we also define the relative weather, which is determined by comparing

the actual weather of the day (average temperature) to the general weather. For example, if we consider April 29,

see Figure 3, the temperature is very high with respect to the average temperature, calculated by using historical

data. Thus, the relative weather is very hot. For each of the three categories of general weather, we consider 5

types of relative weather, depending on the temperature gap between the actual daily average temperature and the

average temperature defined by the general weather: very hot, hot, average, cold and very cold. By combining the

general weather with the relative weather conditions we have 15 combinations of possible meteorological conditions.

Table II presents the relation between relative weather, general weather and patterns of SG request. Each pattern

corresponds to a different probability distribution of the requests (Up, Down and NULL) for a day. By analyzing

data provided by [40], we identify 5 patterns; in pattern 1 and 5 the occurrence of either Down or Up through a

day is extremely high (more than 70%), in pattern 2 and 4 the occurrence of either Down or Up during a day is
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TABLE II
RELATION BETWEEN GENERAL WEATHER, RELATIVE WEATHER AND SG STATES.

Relative weather

General weather
Cold Average Hot

Very cold Pattern 1 Pattern 2 Pattern 5
Cold Pattern 2 Pattern 1 Pattern 5

Average Pattern 3 Pattern 3 Pattern 3
Hot Pattern 5 Pattern 4 Pattern 2

Very hot Pattern 5 Pattern 4 Pattern 1

TABLE III
THE OCCURRENCE PROBABILITY OF EACH STATE FOR DIFFERENT SG PATTERNS.

Smart Grid State Down State Up state Null
Pattern 1 0.8 0.15 0.05
Pattern 2 0.62 0.3 0.08
Pattern 3 0.42 0.42 0.16
Pattern 4 0.3 0.6 0.1
Pattern 5 0.2 0.77 0.03

between 60% and 70%, in pattern 3 there is no dominant request, i.e., Up and Down occur roughly with the same

probability. Table III presents the occurrence probability of each state in a day based on the SG pattern. Indeed, it is

possible to have larger number of patterns with more precise values. However, this would complicate the prediction

of the correct pattern on the day ahead. In our proposed approach (see Section V-A), the predicted pattern of the SG

is used to properly choose the parameter settings of the energy policy. For each pattern, the probability of switching

from a state (request) to another is calculated from data belonging to all the days that follow the corresponding

pattern. We denote the probability of switching from SG state to another as the SG transition probability.

For a day with given weather conditions, we may expect the type of SG pattern, based on Table II, and thus

the occurrence of each type of request as well as the corresponding SG transition probability. It should be noted

that these patterns are identified for France. Nevertheless, the results presented in Section VII can be generalized

considering that the patterns are represented as occurrence probabilities of the SG request states. However, If another

country/dataset is considered, a study of the new dataset to extract the patterns is required as step in building up

the model presented in Section V.

B. Energy management policy

The energy management policy determines how the base station replies to the SG request. The BS can use

generated RE, energy storage and/or RRM to reply to the grid request. In this work, we do not aim at proposing

an optimal policy due to the huge complexity caused by the large number of varying parameters involved in the

problem. Our work rather aims at deploying an empirical energy management strategy to improve the interaction
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with the SG. Thus, we propose a greedy energy policy that takes actions based on the state of the energy storage

and the request of the SG.

The energy management strategy, summarized in Algorithm 1, works as follows. If the SG request is Down, the

BS uses RE and the storage to decrease its grid energy consumption as much as possible. When the storage is below

a threshold thD , stored energy is not used to decrease the energy drained from the SG, so as to avoid the risk of

a complete storage discharge. Thus, The BS threshold thD should satisfy the constraint: thD > (µmax · T − Gmin),

where Gmin is the minimum generated RE, µmax · T is the maximum energy demand of the BS. To reply to the

SG when the request is down and storage is below thD , RE is used. In case of unavailable or insufficient RE

generation, the RRM presented in Section III-B is applied. In Algorithm 1, µd and µ represent the energy demand

of the base station with and without RRM respectively. Note that choosing small values for thD leads to higher

ancillary service but, also, to lower amounts of stored energy.

If the SG request is Up, the BS satisfies its energy demand from the power grid and, in addition, an amount of

energy A is taken from the grid and stored. In order to reduce possible energy wastage, if the storage is above a

threshold thU , the BS acquires from the SG only the amount of energy that the BS needs to operate, and, in this

case, only RE is stored. The threshold thU should satisfy thU < Smax − (GN + A), where GN is the maximum

amount of generated RE. The setting of thU is critical to avoid excessive storing of grid energy and wastage of RE.

Moreover, a good choice of thU is important to respond to Up requests and to ensure the possibility to use stored

energy to reduce the energy consumption from the grid when the request is Down. In the case of Null request, the

SG has no preference and thus the BS keeps the same energy consumption from the grid as announced the day

ahead.

In general, setting the parameters thD , thU , and A is critical and not straightforward, since the effect of the

parameters on the performance depends on many factors including the RE generation, SG request variation, storage

size, grid energy price, and price of providing ancillary services. In the next section, we construct a Markovian

model of a renewable powered BS providing ancillary services to the SG. The transition probabilities of the model

depend on the decisions taken by the energy policy and on the setting of the thresholds thU and thD as well as the

value of A. In the proposed approach (Section V-A), we evaluate the model for different values of the thresholds

and A to obtain a proper parameter setting, with the objective of minimizing the net operational cost. On the one

hand, this allows a significant, although not necessarily optimal, cost reduction, and a remarkable improvement of

the capability of providing ancillary services to the SG.

V. MARKOVIAN MODEL OF THE GREEN SYSTEM OPERATION

In this section, we describe the procedure of constructing the proposed Markov chain that represents a base station

equipped with RE and storage and provides the SG with ancillary services. As shown in Figure 4, the state of the

BS is represented as a multi-dimensional discrete Markov chain that reflects both the level of the energy storage
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Algorithm 1 Energy management algorithm
1: switch grid request do
2: case UP
3: draw µ · T from the grid;
4: if s ≤ thU then
5: draw A from the grid and store it into battery;
6: end if
7: case DOW N
8: if s ≥ thD then
9: derive E = min(µ · T,Gi) from Gi ;

10: if needed, derive µ · T − Gi from the battery;
11: else (case s < thD)
12: if µ · T ≤ Gi then
13: derive E = µ · T from Gi ;
14: else
15: Apply the RRM algorithm: Set the number of activated resource blocks to nact
16: if µD · T > Gi then
17: use E = Gi ;
18: draw µD · T − Gi from the grid;
19: else
20: derive E = µD · T from Gi ;
21: end if
22: end if
23: end if
24: case NULL
25: draw µ · T from the grid;
26: Harvest residual RE into battery, waste the extra amount;

and the SG request state, also depending on the daily pattern of the SG requests, that we denote Pi . Time evolves

according to time slots of duration T . The state of the Markov chain is given by x = (s, r), where s represents

the storage level with number of levels Ns; r ∈ {U,D, N} represents the type of SG request Up, Down or Null.

For each daytype with a given pattern of SG requests, Pi , the number of states in the Markov chain state space is

3 · Ns , where Ns is the number of energy storage levels. Thus, decreasing the value of δs leads to a higher number

of states and a more accurate model, yet a more complex one.

The possible transitions between the Markov model states depend on the generated RE (modeled in Section

III-C), SG operation (modeled in Section IV-A) and the proposed energy management policy (proposed in Section

IV-B). The probability that after an SG request of type r , a requests of type r ′ follows is denoted by P(r, r ′) and

it is derived from the statistics of the requests described in Section IV-A. For each pattern of the SG variation

presented in Table III, we use the pattern statistics to calculate P(r, r ′). The amount of RE generation is represented

by a discrete random variable, G, whose probability mass function is determined based on real data as described

in Section III-C. In addition to RE and SG requests, the possible transitions and their corresponding probabilities

depends on the actions taken by the energy management policy and on the threshold setting. For simplicity, we

assume that the SG request switching and the RE generation are independent, although both RE generation and SG

request state are related to the weather. However, the SG request state is mainly affected by the relative weather

and several additional parameters that do not affect the RE generation, such as energy market, type of day, social
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Fig. 4. Markovian model of the green system operation. Only some sample transitions, among all those possible, are reported.

behavior, special events and low energy consumers/providers. Following such parameters at the level of the 30-

minute time step is overwhelming, if possible, and leads to significant independence of the SG requests from the

RE generation. Moreover, this leads to the randomness of the SG request state at the time step level (each time the

SG sends a request).

In addition, the probability of transition of energy level depends on the energy policy. Table IV presents the

transition probability from state x = (s, r) to state x ′ = (s′, r ′) used to construct the Markov chain representing the

energy state of the BS. Note that the model is designed for BSs powered with local RE sources. However, several

BSs would not be powered by RE sources. Moreover, some of the RE sources do not provide energy in certain

periods of the day, such as solar panels where they do not generate energy during night. In this case, the transition

probabilities of the model presented in Table IV model are still valid with p(Gk = 0) = 1.

A. Approach

In this section, we explain the proposed approach that utilizes the models presented in the previous sections.

The approach consists of two stages, see Figure 5. The first stage, which is done off-line, decides the operating

parameters of the system as follows: 1) Model the patterns of SG requests (Section IV-A). 2) Model the RE

generation depending on the weather (Section III-C). 3) Use the energy policy to reply to the SG requests (Section
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TABLE IV
MARKOV CHAIN TRANSITION PROBABILITY FROM FROM x = (s, r) TO x′ = (s′, r′).

Condition on x Probability Condition on x′

r = D s ≤ thD and GK ≥ µ · T P(D, r ′) · pk s′ = min(max(s, s + Gk − µ · T), Smax)

s ≤ thD and GK < µ · T P(D, r ′) · pk s′ = min(max(s, s + Gk − µD · T), Smax)

s > thD P(D, r ′) · pk s′ = min(s + Gk − µ · T, Smax)

r = U s < thU P(U, r ′) · pk s′ = s + Gk + A
s ≥ thU P(U, r ′) · pk s′ = min(s + Gk, Smax)

r = N P(N, r ′) · pk s′ = min(s + Gk, Smax)

Fig. 5. Proposed approach: (a) first stage (offline), (b) Second stage (online).

IV-B). 4) Model the energy availability at the BS, taking into account RE generation, the SG patterns model, the

energy consumption and the proposed energy management policy (Section V). 5) Use the model to find proper setting

of the parameters of the energy management policy. In step 5, the parameters are chosen based on the objective

of the operator, which is pursued by maximizing or minimizing the corresponding performance indicator(s). The

performance indicators that can be calculated using the model are presented in Section VI. In this paper, we consider

the objective of minimizing the energy operation cost.

The second stage of the proposed approach is performed on-line by using the parameters obtained in the first stage

to operate the base station. Note that the proper parameters configuration for the energy management policy is

selected each day to minimize the cost based on the daily weather forecast and the SG request pattern expected in

the considered day-type.

VI. PERFORMANCE INDICATORS

Several indicators can be derived from the model in order to evaluate the behavior of the system. In the following

we present the main indicators.
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A. Renewable energy utilization and waste

We define the RE utilization as the ratio of consumed RE over the generated RE. The utilization of renewable

energy (URE) is calculated as URE = 1 − W RE , where W RE is the ratio of wasted RE normalized over the

generated RE. The wasted RE is due to the unavailability of the storage, and it is computed as the sum of wasted

energy during the cases of Down, Up and Null. RE waste occurs in case of Down when Gk − µ · T > Smax − sj ,

where Gk is the amount of generated RE (it has probability pk), sj is the current state of the storage and µ is the

power demand of the BS. In case RRM is applied, µ must be replaced by µD . The probability of wasting energy

in case of Down is:

PD
w =

∑
RD

∑
ZD

pk · p(x), (7)

where RD is the subset of states in the Markov chain in which the grid request is Down and ZD includes all the

possible values of generated RE such that there is not enough space in the battery to store all the extra amount of

RE not used by the BS:

RD =
{

x = (s, r) s.t . r = D
}
, ZD =

{
k s.t . Gk − µ · T > Smax − s

}
.

When the SG request is Up, RE is wasted when sj > thU and the generated RE is more than the available storage

capacity. The probability of wasting RE during state Up is:

PU
w =

∑
RU

∑
ZU

pk · p(x), (8)

where RU is the subset of states in the Markov chain in which the grid request is Up and the battery level is higher

than thU , while ZU includes all the possible values of generated RE for which there is not enough space in the

battery to store all the generated RE:

RU =
{

x = (s, r) s.t . s > thU, r = U
}
, ZU =

{
k s.t . Gk > Smax − s

}
.

When the SG request is Null, the probability of wasting RE is:

PN
w =

∑
RN

∑
ZN

pk · p(x), (9)

where RN is the subset of states in the Markov chain in which the grid request is Null and ZN includes all the

possible values of generated RE for which there is not enough available capacity in the battery to store the generated

RE:

RN =
{

x = (s, r) s.t. r = N
}
, ZN =

{
k s.t . Gk > Smax − s

}
.

The average amount of wasted RE in all states is Ew = ED
w + EU

w + EN
w , where ED

w , EU
w and EN

w are calculated
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as follows:

ED
w =

∑
RD

∑
ZD

pk · p(x) · (Gk − µ · T − Smax + s),

EU
w =

∑
RU

∑
ZU

pk · p(x) · (Gk − Smax + s),

EN
w =

∑
RN

∑
ZN

pk · p(x) · (Gk − Smax + s).

B. Energy storage

Another interesting indicators are the average stored energy and the probability of having low storage. We consider

that the storage is low when it is not enough to power the BS without additional sources. The probability of having

low storage, denoted as Pls is Pls =
∑

L p(x), where L is the subset of states in the Markov chain in which the

storage level is too low to satisfy the BS power demand:

L =
{

x = (s, r) s.t. s < µmax · T
}
,

where µmax is the maximum power demand of the BS. The average state of the storage is calculated as Sav =∑
J p(x) · s, where J is the whole Markov chain state space.

C. Ancillary services

The amount of energy used when providing ancillary services depends on the storage state as well as RE

generation and the chosen thresholds. We are interested in the average amount of energy used during state Down

and state Up. In state Down, the average amount of energy used for providing ancillary services is computed as

follows:

ED
anc =

∑
Pr

∑
E p(x) · pk · min(µ · T, (µ − µD) · T + Gk ) +

∑
Fr p(x) · µ · T∑

RD
p(x)

, (10)

where Pr is the subset of states in the Markov chain in which the grid request is Down and the storage level is below

the threshold thD: the SG request may not always be fulfilled (Partial response), since grid energy consumption

can be reduced using generated RE and by applying the RRM; E is the set of all the possible values of RE that

can be generated, up to Gmax : Fr is the subset of states in the Markov chain in which the request is Down and

the grid request can be always satisfied (Full response) even if RE is not available, since the storage level is high

enough to satisfy the BS energy demand; RD includes all the possible states in the Markov chain in which the grid

request is Down:

Pr =
{

x = (s, r) s.t . s < thD, r = D
}
,

E =
{
k s.t. Gk ≤ Gmax

}
,
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Fr =
{

x = (s, r) s.t . thD ≤ s, r = D
}
,

RD =
{

x = (s, r) s.t . r = D
}
.

During state Up, ancillary services are provided for states below thU , and in this case the additional energy drained

from the grid is equal to A. Thus, the amount energy used in providing ancillary services during state Up is:

EU
anc = A ·

∑
Ir p(x)∑
I p(x)

, (11)

where Ir is the subset of states in the Markov chain in which the grid demand is Up and the request of increasing

the energy consumption from the grid can be satisfied (Increase response), since there is still enough space in the

battery to store the extra amount of energy taken from the grid; I is the set of all the states in the Markov chain

in which the grid request is Up:

Ir =
{

x = (s, r) s.t . s ≤ thU, r = U
}
,

I =
{

x = (s, r) s.t. r = U
}
.

Although, this metric does not differentiate between the amount of grid energy decreased/increased during the

states Up and Down, it aims at estimating how much the BS is capable of providing ancillary services in each

state. To differentiate between the two states, the indicator net operational cost gives different weight (via price) of

energy used in providing ancillary service in each state (higher price in case of Down request and lower price in

case of Up request), as shown in Section VI-E.

D. QoS degradation

An important metric in evaluating the proposed approach in replying to the SG requests is studying its effect on

the quality of service of mobile users. The proposed model allows us to calculate the probability of degradation

of quality of users, which is the probability of being in a state where request is Down, energy level is below thD

and generated RE is less than the energy demand of the BS. In this state, RRM strategy is used to reply to the SG

request. The probability of QoS degradation is:

Pdeg =
∑
Pd

·p(x), (12)

Pd =
{

x = (s, r) s.t . s < thD, r = D,Gk < µ · T
}
.

The average QoS degradation is calculated by:

D = Davg · Pdeg, (13)
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where Davg is calculated by averaging the QoS degradation for large number of simulations or measurements

when the radio resource management is applied. For a radio resource management algorithm, the exact value of

the quality of service degradation depends on the traffic intensity, network resources (active resource blocks of the

base station) and demand and condition of each user.

E. Net operation cost

The net operation cost is the difference between the operational cost due to buying on-grid energy and the gain

due to providing ancillary services. The net operational cost C is expressed as follows:

C = [(Pg · Price) − (Panc
D · PriceancD ) · x − (Panc

U · PriceancU ) · y + (Pviol · Penaltyviol) · z] · T,

where Pg is the average power taken from the grid. Price is the average price of grid energy, Panc
D and Panc

U

are the average adjustment powers in case of request Down and Up respectively. PriceancD and PriceancU are the

gain due to participating in providing the services in case of request Down and Up respectively, Pviol is the power

difference when opposing the request direction (violating the request). Penaltyviol is the penalty of opposing the

request direction.

x is set to 1 if the BS participates in providing ancillary services during a Down request. If the request is Down,

and the BS did not participate in ancillary services or violated the request, then x is set to 0. x is also set to 0

when the request is Up or Null. y is set to 1 if the BS participates in providing ancillary services during an Up

request. If the request is Up, and the BS did not participate in ancillary services or violated the request, then y is

set to 0. y is also set to 0 if the request is Down or Null. In case of violation of Up or Down requests z is set to

1. In the proposed policy, x is always 1 when the request is Down and the BS can always fulfill this request by

using RE, stored energy and/or RRM. y can be 0 or 1 when the request is Up, since the policy may not participate

in ancillary services if the storage is above thU . z is always set to 0 in the proposed policy, since the BS may not

participate in providing ancillary services but it would not violate the request in any case.

F. Choice of thresholds

Our aim is to find a proper setting of the thresholds of the energy policy, where it is possible to choose any of

the performance indicators to formulate the problem. We focus on the net energy cost due to the MNOs priority

in reducing the energy cost of the BSs. In this case, the choice of thresholds is done to minimize the net energy

operational cost C: minimize
thi,thd,A

C. The results of the proposed energy policy presented in the following section are

obtained under proper threshold values, that are tuned by calculating the steady state probabilities of the Markov

model for all the possible thresholds and choosing the best thresholds by performing an exhaustive search considering

the objective of minimizing the net operational cost.
VII. RESULTS

In this section, we evaluate the performance of the proposed energy management policy for different patterns of

SG requests, RE generation and storage size. Furthermore, setting the parameters used in the energy management
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algorithm is investigated. Based on the data provided by [40], the SG sends a request every period T = 30 min.

Using these data, we model the green mobile system operation by designing a Markov chain for each of the SG

request patterns identified in Section IV-A. We evaluate the system performance under several combinations of RE

generation levels, provided by [43], and storage sizes. RE generation is expressed as a percentage of the BS energy

demand, that is assumed to be equal to 1200 Wh. This allows to generalize the results for different locations, since

the location of the base station significantly affects the amount of generated RE. To represent battery charge levels

in the Markovian model, stored energy is quantized into steps of 100 Wh.

The average price of on-grid energy and average gain of providing ancillary services are calculated from data

provided by [40] as follows: average on-grid energy cost: 37 e/MWh, average gain of ancillary service in case of

Down: 60 e/MWh, average gain of ancillary service in case of Up: 24 e/MWh. In France, there are more than

90000 BSs [44]. If we consider that a network operator has 20000 LTE BSs, the annual energy cost of these BSs

is about 8 Me. The reward for providing ancillary services in case of Down is higher than the price of grid energy.

Thus, the BS gains a positive revenue in case of a Down SG request, if it succeeds in providing ancillary services.

In case of an Up request, the gain of providing ancillary service is lower than the on-grid energy price; hence,

providing the service is equivalent to buying grid energy at lower price.

First, we present the first stage entailing the off-line proper setting of thresholds that are adopted for the energy

management algorithm. The proper settings of the thresholds are calculated using exhaustive search within a

predefined set, with the objective of minimizing the operational cost of the BS. Note that the results derived

next, except in Section VII-B2, are derived by solving the Markov chain numerically. Afterwards, we discuss

results related to the second stage of our approach, that are derived under the proper parameter configuration

obtained in the first stage. We study the impact of RE system dimensioning on the capability of providing ancillary

services. Furthermore, the effect of different patterns of SG requests on the system performance is analyzed in

terms of operational cost, under various RE system sizing. In addition, the effects on cost of the application of

RRM technique are examined. Finally, the proposed energy management policy is compared with respect to other

approaches from the literature.

A. First stage: off-line threshold setting

The analysis of the proper threshold setting allowing to minimize cost is important to understand the performance

of the proposed energy management policy. For all considered cases, the threshold thD (used in the Down state) is

the same and corresponds to the maximum energy demand of the BS. This result is predictable since the gain of

providing ancillary services in Down is high, and the BS will try to respond to the grid request as much as possible

in this case. The thresholds thU and A do not follow the same trend, their optimal values change in the various

scenarios. Table V presents the threshold values allowing to minimize cost in the case of pattern 3. For a fixed RE
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TABLE V
OPTIMIZED THRESHOLDS FOR PATTERN 3.

Storage size (Wh) RE (%) thU (Wh) A (Wh)
2000 22 600 300
2000 44 600 300
2000 66 500 100
4000 22 1900 600
4000 44 1300 600
4000 66 400 200
6000 22 4000 600
6000 44 1600 600
6000 66 400 200
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Fig. 6. Average storage state for different RE generation and storage sizes.

generation, the values of thU and A increase with the storage size. Given the storage size, the proper values of thU

and A decrease with increases of RE generation, so as to avoid wastage RE. This is true for other patterns also.

For fixed RE generation and storage size, the suitable values of thU and A, for patterns with high probability of

Down state (low probability of Up state), are higher than those for a pattern with lower probability of the Down

state (higher probability of Up state). This is justified by the fact that the BS will try to ensure available energy in

the storage, by storing energy from the grid in Up state, to reply to the grid request in Down state and increase its

gain.

B. Second stage: performance analysis under optimal parameter setting

In our approach, the energy storage is one of the main components that enables BSs to provide the SG with

ancillary services. Figure 6 presents the average stored energy for different RE generations and storage sizes

(averaged for all patterns). As expected, the average amount of stored energy increases with the increase of RE

generation. We notice that the average stored energy is very low when RE in unavailable, RE=0. We focus now

on RE utilization that was introduced in Section VI-A. The results are presented in Figure 7 for different RE

generations and storage sizes (results are the averaged for all patterns). The energy management policy achieves

high utilization of RE. RE utilization decreases when increasing the RE generation, and slightly increases when

increasing the storage. Figure 8 (a) shows the ratio of average energy used for providing ancillary services, for all

patterns, to the BS energy demand in the Down state for different amounts of RE generation and values of the
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Fig. 8. Ratio of average energy used for providing ancillary services to the BS demand in case of state Down (a) and state Up (b).

storage size. Clearly, the energy used for providing ancillary services in Down increases with the RE and storage

size. Notice that the ratio of ancillary services is almost 1 when RES and storage size are large, which justifies the

limit achieved in the gain in terms of operational cost (presented later). Providing ancillary services in Down state

reduces the net cost. However, providing ancillary services in case of Up is equivalent to buying energy with cheaper

price. Figure 8 (b) presents the amount of energy used for providing ancillary services in Up state normalized by

the BS energy demand. The increase of RE leads to lower amount of services, since the BS prefers to use RE (free

energy) than to buy energy to be used later even at cheap price. This also justifies the choice of the thresholds of
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Fig. 9. Normalized energy operation net cost for different RE average generation, storage sizes and SG request patterns (a: pattern 1; b: pattern
3; c: pattern 5).

the energy management policy presented before, where increasing the RE leads to lower thU and A.

Our results show that a larger size of the battery allows to raise the volume of ancillary services, with a more

evident effect in case no PV panels are installed. However, in our scenario a battery storage with capacity larger

than 4 kWh does not provide further significant improvement to this extent.

The net energy operational cost depends on many parameters including the generated RE, storage size and SG

pattern. In general, the net cost decreases when RE generation increases since the base station can rely more on RE.

Moreover, increasing the size of the storage allows more storing of excess RE, which can be used later to further

decrease the net cost. Figure 9 presents the normalized net cost of energy using our proposed approach (RRM is not

considered in this case) for different values of the amount of generated RE, storage size and SG patterns (Patterns

1,3 and 5 are presented). The normalized net energy cost (NNEC) is calculated following: NNEC = C
Cre f

, where

C is the net operational cost calculated in VI-E and Cre f is the energy cost calculated assuming that the BS relies

only on on-grid energy, without applying our proposed approach; Cre f = EBS ∗ Price where EBS is the BS energy

demand without applying RRM and Price is the unitary price of on-grid energy.

From Figure 9, we see that the effect of RE variations and storage size is different in each pattern. For example,

the impact of increasing the RE generation or storage size is obvious in pattern 1, where this increase leads to

relatively high reduction in terms of the energy net cost. On the contrary, increasing RE generation or/and storage

size is almost negligible in pattern 5. Indeed, pattern 5 is dominated by Up requests, which means that the BS

should increase its consumption, and thus the BS should store energy from the grid. Nevertheless, the proposed
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energy policy succeeds to significantly reduce the energy operation cost even with small amount of RE for all the

patterns. When RE is available (RE , 0), the range of energy cost reduction is between 61.1% (pattern 5, RE=22%,

2000 Wh storage) and 198.88% (pattern 1, RE=66%, 6000 Wh storage). In the latter case, the SG pays for the

cellular operator approximately the same value that is usually paid by the operator to run the BS. It should be noted

that negative net cost is achieved when the gain due to providing ancillary services exceeds the cost of grid energy.

Regarding the cost saving, the impact of the battery size is limited when no RE is locally produced and only in

some cases higher cost saving can be achieved with larger battery size, depending on the sequence of SG requests.

When a local RE generator is present, a larger battery size allows to obtain an additional, still limited, reduction

in cost. Nevertheless, under some patterns of SG requests, increasing the battery size makes no difference at all

in terms of cost saving (pattern 5). A more relevant role to this extent is played by the PV panel size. In general,

the storage of a renewable powered BS should not be too small with respect to the BS energy demand, in order

to guarantee sufficient energy supply when RE is not produced and the SG asks for a decrease in the consumption

from the grid. Furthermore, the storage should be large enough to harvest the extra amounts of energy drawn from

the grid to accomplish the SG requests of type Up.

1) Performance under Radio Resource Management: We study the effectiveness of the proposed approach in

utilizing local RE generation and using radio resource management for reducing the operational costs and replying

to the SG requests. Figure 10 shows the average net cost that is obtained by averaging the results obtained in the

patterns and taking into account the probability of each pattern. The results are shown for the cases with and without

RRM. When RE sources are not available (RE=0), the network operator can achieve some reduction in the cost using

the storage only. Significant reduction in net cost is achieved when using RRM up to 42 percentage points (storage

size 2000 Wh). Increasing the storage size will increase the reduction until some limit where no further reduction

is achieved. In case of available RE, increasing the RE generation and the storage size can lead to important gain

in cost, where negative energy cost can be achieved. These results also show that the benefits in terms of average

cost reduction obtained under RE generation when a larger battery is installed are more evident during the actual

system operation, with respect to the case of Figure 9. In that case, the focus was on cost saving achieved for single

daytypes, each featuring a given pattern of SG requests. Under some patterns, it might seem not convenient to

increase the battery capacity to very high levels, since the benefits that could be obtained would be limited. Hence,

in order obtain further cost reduction, increasing the PV panel size would result more effective. Conversely, in this

case the battery capacity has a more relevant impact on cost reduction, likely due to the combination of different

patterns of SG requests occurring with different probabilities during the actual system operation.

In addition, RRM can further decreases the net cost. It can be easily noticed that the effect of RRM algorithm

decreases with the increase of RE generation and storage size, where the base station can rely more on RE to reply

the SG requests. Finally, it should be noted that there is a certain limit that can be achieved even with the increase
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TABLE VI
PARAMETERS’ VALUES AND ASSUMPTIONS.

Parameters Values and assumptions
Number of sectors in a BS 3

Carrier frequency 2GHz
Bandwidth 10 MHz, FDD
Cell radius 500 m

User distribution Uniform
Maximum number of users 27
Number of resource blocks 50
Resource block bandwidth 180kHz

Path loss Cost 231 extended Hata model
GT 15 dBi
GR 0

Schedulers Round Robin
Noise figure 9 dB

BS power model EARTH [34]

of RE generation and the storage. This result can help mobile operators in choosing the size of their RE sources

and energy storage and to avoid over-sizing and paying unnecessary capital investment.

2) Comparison with other policies: In order to validate the model, we simulate the performance of a BS

considering SG requests for 365 consecutive days provided by [40]. The data used for simulations is not the

same used for deriving the proper threshold configuration of each pattern. The simulated scenario considers a

BS and uniformly distributed users with different QoS demand. Table VI summarizes the parameters used in the

simulations. Traffic intensity variates based on [45] with a maximum of 27 users, where the users are divided

equally into HQ, SQ and BE users. The user’s QoS is evaluated based on calculating the utility function in terms

of achieved bit rate and user’s demand as illustrated in Section III-B.

We consider that the BS is equipped with solar panels and a 6 kWh energy storage. We assume that, based on

weather predictions, the BS knows the SG request pattern for the next day, and uses the proper threshold settings

for that pattern, storage size and RE generation. For the night, we consider the threshold configuration allowing to

minimize cost for the case of RE=0.
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Fig. 12. Quality of service (QoS) degradation for simulated algorithms with respect to RE generation.

We compare the results of the proposed scheme with four other algorithms: Basic greedy, SPAEMA [46], traffic-

aware resource block utilization (TARBU) [47] and TARBU combined with SPAEMA. Basic algorithm uses RE

when it is available, stores excess generated energy, and uses the stored energy in case of unavailable RE. In contrast

to the approach considered in this paper, where the aim is to provide the grid with ancillary services, SPAEMA

is designed for deciding the usage of RE based on dynamic tariff of grid energy (real-time price of grid energy)

[46]. TARBU determines the number of active resource blocks based on the intensity of the traffic, where RE usage

follows basic algorithm. TARBU-SPAEMA utilizes RE based on grid energy price and storage state while activating

and deactivating resource blocks based on traffic intensity.

Figure 11 presents the net energy cost normalized to the reference cost, which is the energy cost of the BS

when consuming only grid energy without using any energy efficiency technique. One of the advantages of the

proposed approach is that it allows to reduce the cost even without the deployment of RE sources, where operators

can exploit on-site energy storage and RRM algorithms. However, this comes with a relatively high degradation

of QoS (22%) as illustrated in Figure 12. From Figure 11, we see that the proposed approach overcomes other

approaches in term of energy cost. Unlike the other approaches, which only reduce the on-on-grid energy cost, the

proposed approach leads to negative energy cost, i.e. the SG pays to the operator. Basic approach has the worst

performance in terms of cost reduction. SPAEMA and TARBU have almost the same energy cost for different RE
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generation, but TARBU leads to a small QoS degradation. When using TARBU-SPAEMA, the cost reduction is

further increase preserving the same QoS degradation.

Considering the proposed approach, the cost reduction increases with RE generation. Moreover, the QoS degrada-

tion decreases with RE generation, where more RE means lower probability of low storage and thus radio resource

management algorithm is hardly used. When RE generation is 66%, the proposed approach achieves -46% net

energy cost with negligible degradation in QoS, and this emphasizes the efficiency of this approach when RE

sources and storage size are well chosen.

VIII. CONCLUSION

With the growing of cellular communication industry, network operators are challenged to decrease their Carbon

footprint as well as their energy costs to sustain environmental and profitable business. Thus, cellular operators

are deploying on-site RE sources and managing their energy resources. At the same time, energy distributors

are deploying Smart Grid environments in which energy generation and consumption are jointly considered, and

consumers can become active in optimizing the energy usage.

In this paper, we propose a novel energy model for cellular networks in SG and RE environments, in which

BSs use the harvested energy and energy storage and adjust their radio resources to provide the SG with ancillary

services. We provide a Markovian characterization of the BS based on the analysis of historical meteorological data

and real data of an SG operator. We also propose a simple energy management policy for BSs equipped with RE

sources and energy storage to answer the SG requests. Moreover, radio resource management is used to reply to

the SG request when RE and the storage are not sufficient. From the solution of the Markovian model, we can

choose the parameters of the energy management policy in order to minimize cost. Results show that the proposed

approach can achieve negative operational cost up to 98.88% of the initial electric bill, and support the grid by

providing ancillary services. Finally, we test our approach by simulating a BS using the energy policy with proper

threshold configurations for 365 consecutive days. Results confirm the effectiveness of the proposed approach where

up to -46% net energy cost is achieved with negligible degradation of quality of service.
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