103,188 research outputs found

    Towards energy efficient clustering in wireless sensor networks: A comprehensive review

    Get PDF
    Clustering is one of the fundamental approaches used to optimize energy consumption in wireless sensor networks. Clustering protocols proposed in the literature can be classified according to different criteria related to their features such as the clustering methodology, objectives, cluster count and size, etc. This paper reviews the existing feature-based classifications of clustering protocols and elaborates a more generic and unified classification. It also analyzes and discusses the relevant design factors that may influence the energy efficiency of clustering protocols and accordingly proposes a new energy-oriented taxonomy. State-of-the-art clustering solutions are then reviewed and evaluated following the proposed taxonomy

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs

    Full text link
    The nodes in wireless sensor networks (WSNs) contain limited energy resources, which are needed to transmit data to base station (BS). Routing protocols are designed to reduce the energy consumption. Clustering algorithms are best in this aspect. Such clustering algorithms increase the stability and lifetime of the network. However, every routing protocol is not suitable for heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy efficient protocol for wireless sensor networks. AM-DisCNT uses circular deployment for even consumption of energy in entire wireless sensor network. Cluster-head selection is on the basis of energy. Highest energy node becomes CH for that round. Energy is again compared in the next round to check the highest energy node of that round. The simulation results show that AM-DisCNT performs better than the existing heterogeneous protocols on the basis of network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Adaptive decentralized re-clustering protocol for wireless sensor networks

    Get PDF
    AbstractWireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way since the energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor network. In this paper, we introduce an adaptive clustering protocol for wireless sensor networks, which is called Adaptive Decentralized Re-Clustering Protocol (ADRP) for Wireless Sensor Networks. In ADRP, the cluster heads and next heads are elected based on residual energy of each node and the average energy of each cluster. The simulation results show that ADRP achieves longer lifetime and more data messages transmissions than current important clustering protocol in wireless sensor networks

    Automatic application object migration in sensor networks

    Get PDF
    Object migration in wireless sensor networks has the potential to reduce energy consumption for a wireless sensor network mesh. Automated migration reduces the need for the programmer to perform manual static analysis to find an efficient layout solution. Instead, the system can self-optimise and adjust to changing conditions. This paper describes an automated, transparent object migration system for wireless sensor networks, implemented on a micro Java virtual machine. The migration system moves objects at runtime around the sensor mesh to reduce communication overheads. The movement of objects is transparent to the application developer. Automated transparent object migration is a core component of Hydra, a distributed operating system for wireless sensor networks that is currently under development. Performance of the system under a complex performance test scenario using a real-world dataset of seismic events is described. The results show that under both simple and complex conditions the migration technique can result in lower data traffic and consequently lower overall energy cost

    Comparative Analysis of QoS-Aware Routing Protocols for Wireless Sensor Networks

    Get PDF
    The main ability of wireless sensor networks (WSNs) is communicating and sensing between nodes, which are deployed in a wide area with a large number of nodes. Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The limiting factors of the sensor nodes, such as their finite energy supplies and their moderate processing abilities, as well as the unreliable wireless medium restrict the performance of wireless sensor networks While contemporary best-effort routing approaches address unconstrained traffic, QoS routing is usually performed through resource reservation in a connection-oriented communication in order to meet the QoS requirements for each individual connection. This article surveys a sample of existing QoS-Aware Routing Protocols for Wireless Sensor Networks and highlights their key features, including merits and limitations. Keywords: Wireless sensor networks, Routing protocols, QoS-Aware Routing Protocols
    corecore