81,891 research outputs found

    Adjacency Matrix Based Energy Efficient Scheduling using S-MAC Protocol in Wireless Sensor Networks

    Full text link
    Communication is the main motive in any Networks whether it is Wireless Sensor Network, Ad-Hoc networks, Mobile Networks, Wired Networks, Local Area Network, Metropolitan Area Network, Wireless Area Network etc, hence it must be energy efficient. The main parameters for energy efficient communication are maximizing network lifetime, saving energy at the different nodes, sending the packets in minimum time delay, higher throughput etc. This paper focuses mainly on the energy efficient communication with the help of Adjacency Matrix in the Wireless Sensor Networks. The energy efficient scheduling can be done by putting the idle node in to sleep node so energy at the idle node can be saved. The proposed model in this paper first forms the adjacency matrix and broadcasts the information about the total number of existing nodes with depths to the other nodes in the same cluster from controller node. When every node receives the node information about the other nodes for same cluster they communicate based on the shortest depths and schedules the idle node in to sleep mode for a specific time threshold so energy at the idle nodes can be saved.Comment: 20 pages, 2 figures, 14 tables, 5 equations, International Journal of Computer Networks & Communications (IJCNC),March 2012, Volume 4, No. 2, March 201

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore