13 research outputs found

    A Pre-defined Scheme for Optimum Energy Consumption in Wireless Sensor Network

    Get PDF
    One of the fundamental issues that needs a serious attention in Wireless Sensor Network (WSN) is node deployment. A proper node deployment scheme can help extending the lifetime of WSN’s by reducing the energy consumption. In this paper, we implement Improved Harmony Search (IHS) algorithm with several modifications in determining the best position for each sensor node in order to obtain an optimum energy consumption. The number range in selecting the random number to determine a new harmony is expended. Based on the experiment, the result obtained gives lower energy consumption rate. To enhance the energy performance, we test the best sink node’s position to obtain the best position for sink node

    Optimal fault-tolerant placement of relay nodes in a mission critical wireless network

    Get PDF
    The operations of many critical infrastructures (e.g., airports) heavily depend on proper functioning of the radio communication network supporting operations. As a result, such a communication network is indeed a mission-critical communication network that needs adequate protection from external electromagnetic interferences. This is usually done through radiogoniometers. Basically, by using at least three suitably deployed radiogoniometers and a gateway gathering information from them, sources of electromagnetic emissions that are not supposed to be present in the monitored area can be localised. Typically, relay nodes are used to connect radiogoniometers to the gateway. As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper address the problem of computing a deployment for relay nodes that minimises the relay node network cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance). We show that the above problem can be formulated as a Mixed Integer Linear Programming (MILP) as well as a Pseudo-Boolean Satisfiability (PB-SAT) optimisation problem and present experimental results com- paring the two approaches on realistic scenarios

    An energy efficient routing scheme by using GPS information for wireless sensor networks

    Get PDF
    In the process of transmission in wireless sensor networks (WSN), a vital problem is that a centre region close to the sink will form in which sensors have to cost vast amount of energy. To communicate in an energy-efficient manner, compressed sensing (CS) has been employed gradually. However, the performance of plain CS is significantly dependant on the specific data gathering strategy in practice. In this paper, we propose an energy-efficient data gathering scheme based on regionalisation CS. Subsequently, advanced methods for practical applications are considered. Experiments reveal that our scheme outperforms distributed CS, the straight forward and the mixed schemes by comparing different parameters of the data package, and the considered methods also guarantee its feasibility.N/

    Energy efficient secured cluster based distributed fault diagnosis protocol for IoT

    Get PDF
    The rapid growth of internet and internet services provision offers wide scope to the industries to couple the various network models to design a flexible and simplified communication infrastructure. A significant attention paid towards Internet of things (IoT), from both academics and industries. Connecting and organizing of communication over wireless IoT network models are vulnerable to various security threats, due to the lack of inappropriate security deployment models. In addition to this, these models have not only security issues; they also have many performance issues. This research work deals with an IoT security over WSN model to overcome the security and performance issues by designing a Energy efficient secured cluster based distributed fault diagnosis protocol (EESCFD) Model which combines the self-fault diagnosis routing model using cluster based approach and block cipher to organize a secured data communication and to identify security fault and communication faults to improve communication efficiency. In addition we achieve an energy efficiency by employing concise block cipher which identifies the ideal size of block, size of key, number of rounds to perform the key operations in the cipher

    Routing Algorithm with Uneven Clustering for Energy Heterogeneous Wireless Sensor Networks

    Get PDF
    Aiming at the “hotspots” problem in energy heterogeneous wireless sensor networks, a routing algorithm of heterogeneous sensor network with multilevel energies based on uneven clustering is proposed. In this algorithm, the energy heterogeneity of the nodes is fully reflected in the mechanism of cluster-heads’ election. It optimizes the competition radius of the cluster-heads according to the residual energy of the nodes. This kind of uneven clustering prolongs the lifetime of the cluster-heads with lower residual energies or near the sink nodes. In data transmission stage, the hybrid multihop transmission mode is adopted, and the next-hop routing election fully takes account of the factors of residual energies and the distances among the nodes. The simulation results show that the introduction of an uneven clustering mechanism and the optimization of competition radius of the cluster-heads significantly prolonged the lifetime of the network and improved the efficiency of data transmission

    Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms

    Full text link
    [EN] Wireless sensor networks are widely used for monitoring different processes, including agriculture, in order to reach sustainability. One of the keys to sustainable crops is water saving. In particular, saving water is extremely important in arid and semiarid regions. In those regions, citrus trees are cultivated, and drip irrigation is used to save water. In this paper, we propose a smart irrigation system for citrus trees using a WSN. We describe the employed sensors and nodes for this proposal. Next, we present the proposed architecture and the operational algorithms for the nodes. Moreover, we designed different algorithms for fault tolerance and energy saving functionalities. The energy saving algorithm is based on the relevance of the gathered data, which is analyzed in order to consider whether the information should be forwarded or not. A TPC-based protocol is proposed to perform the communication among the nodes of our system. In addition, we present different simulations of the proposed system. Particularly, we show the consumed bandwidth and the remaining energy in the different nodes. Finally, we test different energy configurations to evaluate the network lifetime and the remaining energy when the first node depletes its energy.This work has been partially supported by the “Conselleria d' Educació, Investigació, Cultura i Esport” through the “Subvenciones para la contratación de personal investigator de carácter predoctoral (Convocatoria 2017)” Grant number ACIF/2017/069, by the “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para contratacion predoctoral de Formación del Profesorado Universitario FPU (Convocatoria 2014)”. Grant number FPU14/02953 and finally, the research leading to these results has received funding from “la Caixa” Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Parra-Boronat, L.; Rocher-Morant, J.; García-García, L.; Lloret, J.; Tomás Gironés, J.; Romero Martínez, JO.; Rodilla, M.... (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms. 10(2):95-115. https://doi.org/10.5296/npa.v10i2.13205S9511510
    corecore