5,186 research outputs found

    Energy-Efficiency Based Resource Allocation for the Scalar Broadcast Channel

    Get PDF
    Until recently, link adaptation and resource allocation for communication system relied extensively on the spectral efficiency as an optimization criterion. With the emergence of the energy efficiency (EE) as a key system design criterion, resource allocation based on EE is becoming of great interest. In this paper, we propose an optimal EE-based resource allocation method for the scalar broadcast channel (BC-S). We introduce our EE framework, which includes an EE metric as well as a realistic power consumption model for the base station, and utilize this framework for formulating our EE-based optimization problem subject to a power as well as fairness constraints. We then prove the convexity of this problem and compare our EE-based resource allocation method against two other methods, i.e. one based on sum-rate and one based on fairness optimization. Results indicate that our method provides large EE improvement in comparison with the two other methods by significantly reducing the total consumed power. Moreover, they show that near-optimal EE and average fairness can be simultaneously achieved over the BC-S channel

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Optimal Wideband LPDA Design for Efficient Multimedia Content Delivery over Emerging Mobile Computing Systems

    Get PDF
    An optimal synthesis of a wideband Log-Periodic Dipole Array (LPDA) is introduced in the present study. The LPDA optimization is performed under several requirements concerning the standing wave ratio, the forward gain, the gain flatness, the front-to-back ratio and the side lobe level, over a wide frequency range. The LPDA geometry that complies with the above requirements is suitable for efficient multimedia content delivery. The optimization process is accomplished by applying a recently introduced method called Invasive Weed Optimization (IWO). The method has already been compared to other evolutionary methods and has shown superiority in solving complex non-linear problems in telecommunications and electromagnetics. In the present study, the IWO method has been chosen to optimize an LPDA for operation in the frequency range 800-3300 MHz. Due to its excellent performance, the LPDA can effectively be used for multimedia content reception over future mobile computing systems

    Energy-Efficiency Based Resource Allocation for the Orthogonal Multi-User Channel

    Get PDF
    Energy efficiency (EE) is emerging as a key design criterion for both power limited, i.e. mobile devices, and power-unlimited, i.e. cellular networks, applications. Whereas, resource allocation is a well-known technique for improving the performance of communication systems. In this paper, we design a simple and optimal EE-based resource allocation method for the orthogonal multi-user channel by adapting the transmit power and rate to the channel condition such that the energy-per-bit consumption is minimized. We present our EE framework, i.e. EE metric and node power consumption model, and utilize it for formulating our EE-based optimization problem with or without constraint. In both cases, we derive explicit formulations of the optimal energy-per-bit consumption as well as optimal power and rate for each user. Our results indicate that EE-based allocation can substantially reduce the consumed power and increase the EE in comparison with spectral efficiency-based allocation
    • …
    corecore