113 research outputs found

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability

    Power-spectrum trading for full-duplex D2D communications in cellular networks

    Get PDF
    Device-to-device (D2D) communications allows two adjacent mobile terminals transmit signal directly without going through base stations, which has been considered as one of the key technologies for future mobile networks. As full-duplex (FD) communications can improve the performance (i.e., throughput, energy efficiency (EE)) of communications systems, it is commonly used in practical D2D communications scenarios. However, FD-enabled D2D communications also results in self-interference. To fully realize the potential benefits of FD-enabled D2D communications, an effective resource allocation mechanism is critical to avoid not only the self-interference of FD-enabled D2D communications but also the interference between D2D users (DUs) and cellular users (CUs). In this paper, we investigate the resource allocation issue for FD-enabled DUs and traditional CUs. Considering the asymmetry of energy and spectrum resources of DUs and CUs, we propose a power-spectrum trading mechanism to achieve mutual benefits for both types of users. A concave-convex procedure algorithm is employed to solve the optimization problem of power allocation, and then a maximum weighted bipartite matching based method is proposed to select proper D2D pairs to maximize the overall system throughput. Numerical results show that the proposed scheme can remarkably improve the overall throughput and EE of FD-enabled D2D communications system
    corecore