5 research outputs found

    From Classical Logic to Fuzzy Logic and Quantum Logic: A General View

    Get PDF
    The aim of this article is to offer a concise and unitary vision upon the algebraic connections between classical logic and its generalizations, such as fuzzy logic and quantum logic. The mathematical concept which governs any kind of logic is that of lattice. Therefore, the lattices are the basic tools in this presentation. The Hilbert spaces theory is important in the study of quantum logic and it has also been used in the present paper

    Energy discriminant analysis, quantum logic, and fuzzy sets

    No full text
    In this paper, we show that quantum logic of linear subspaces can be used for recognition of random signals by a Bayesian energy discriminant classifier. The energy distribution on linear subspaces is described by the correlation matrix of the probability distribution. We show that the correlation matrix corresponds to von Neumann density matrix in quantum theory. We suggest the interpretation of quantum logic as a fuzzy logic of fuzzy sets. The use of quantum logic for recognition is based on the fact that the probability distribution of each class lies approximately in a lower-dimensional subspace of feature space. We offer the interpretation of discriminant functions as membership functions of fuzzy sets. Also, we offer the quality functional for optimal choice of discriminant functions for recognition from some class of discriminant functions.Recognition Quantum logic Discriminant function Fuzzy set von Neumann density matrix Membership functions Subspace classifier Quality functional Quantum decision
    corecore