115 research outputs found

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm

    A Survey on Energy Consumption and Environmental Impact of Video Streaming

    Full text link
    Climate change challenges require a notable decrease in worldwide greenhouse gas (GHG) emissions across technology sectors. Digital technologies, especially video streaming, accounting for most Internet traffic, make no exception. Video streaming demand increases with remote working, multimedia communication services (e.g., WhatsApp, Skype), video streaming content (e.g., YouTube, Netflix), video resolution (4K/8K, 50 fps/60 fps), and multi-view video, making energy consumption and environmental footprint critical. This survey contributes to a better understanding of sustainable and efficient video streaming technologies by providing insights into the state-of-the-art and potential future directions for researchers, developers, and engineers, service providers, hosting platforms, and consumers. We widen this survey's focus on content provisioning and content consumption based on the observation that continuously active network equipment underneath video streaming consumes substantial energy independent of the transmitted data type. We propose a taxonomy of factors that affect the energy consumption in video streaming, such as encoding schemes, resource requirements, storage, content retrieval, decoding, and display. We identify notable weaknesses in video streaming that require further research for improved energy efficiency: (1) fixed bitrate ladders in HTTP live streaming; (2) inefficient hardware utilization of existing video players; (3) lack of comprehensive open energy measurement dataset covering various device types and coding parameters for reproducible research

    Code improvements towards implementing HEVC decoder

    Get PDF

    A Bit Stream Feature-Based Energy Estimator for HEVC Software Encoding

    Full text link
    The total energy consumption of today's video coding systems is globally significant and emphasizes the need for sustainable video coder applications. To develop such sustainable video coders, the knowledge of the energy consumption of state-of-the-art video coders is necessary. For that purpose, we need a dedicated setup that measures the energy of the encoding and decoding system. However, such measurements are costly and laborious. To this end, this paper presents an energy estimator that uses a subset of bit stream features to accurately estimate the energy consumption of the HEVC software encoding process. The proposed model reaches a mean estimation error of 4.88% when averaged over presets of the x265 encoder implementation. The results from this work help to identify properties of encoding energy-saving bit streams and, in turn, are useful for developing new energy-efficient video coding algorithms.Comment: arXiv admin note: text overlap with arXiv:2207.0267

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481

    Cloud media video encoding:review and challenges

    Get PDF
    In recent years, Internet traffic patterns have been changing. Most of the traffic demand by end users is multimedia, in particular, video streaming accounts for over 53%. This demand has led to improved network infrastructures and computing architectures to meet the challenges of delivering these multimedia services while maintaining an adequate quality of experience. Focusing on the preparation and adequacy of multimedia content for broadcasting, Cloud and Edge Computing infrastructures have been and will be crucial to offer high and ultra-high definition multimedia content in live, real-time, or video-on-demand scenarios. For these reasons, this review paper presents a detailed study of research papers related to encoding and transcoding techniques in cloud computing environments. It begins by discussing the evolution of streaming and the importance of the encoding process, with a focus on the latest streaming methods and codecs. Then, it examines the role of cloud systems in multimedia environments and provides details on the cloud infrastructure for media scenarios. After doing a systematic literature review, we have been able to find 49 valid papers that meet the requirements specified in the research questions. Each paper has been analyzed and classified according to several criteria, besides to inspect their relevance. To conclude this review, we have identified and elaborated on several challenges and open research issues associated with the development of video codecs optimized for diverse factors within both cloud and edge architectures. Additionally, we have discussed emerging challenges in designing new cloud/edge architectures aimed at more efficient delivery of media traffic. This involves investigating ways to improve the overall performance, reliability, and resource utilization of architectures that support the transmission of multimedia content over both cloud and edge computing environments ensuring a good quality of experience for the final user

    Content-Adaptive Variable Framerate Encoding Scheme for Green Live Streaming

    Full text link
    Adaptive live video streaming applications use a fixed predefined configuration for the bitrate ladder with constant framerate and encoding presets in a session. However, selecting optimized framerates and presets for every bitrate ladder representation can enhance perceptual quality, improve computational resource allocation, and thus, the streaming energy efficiency. In particular, low framerates for low-bitrate representations reduce compression artifacts and decrease encoding energy consumption. In addition, an optimized preset may lead to improved compression efficiency. To this light, this paper proposes a Content-adaptive Variable Framerate (CVFR) encoding scheme, which offers two modes of operation: ecological (ECO) and high-quality (HQ). CVFR-ECO optimizes for the highest encoding energy savings by predicting the optimized framerate for each representation in the bitrate ladder. CVFR-HQ takes it further by predicting each representation's optimized framerate-encoding preset pair using low-complexity discrete cosine transform energy-based spatial and temporal features for compression efficiency and sustainable storage. We demonstrate the advantage of CVFR using the x264 open-source video encoder. The results show that CVFR-ECO yields an average PSNR and VMAF increase of 0.02 dB and 2.50 points, respectively, for the same bitrate, compared to the fastest preset highest framerate encoding. CVFR-ECO also yields an average encoding and storage energy consumption reduction of 34.54% and 76.24%, considering a just noticeable difference (JND) of six VMAF points. In comparison, CVFR-HQ yields an average increase in PSNR and VMAF of 2.43 dB and 10.14 points, respectively, for the same bitrate. Finally, CVFR-HQ resulted in an average reduction in storage energy consumption of 83.18%, considering a JND of six VMAF points
    • …
    corecore