11,497 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Energy managed reporting for wireless sensor networks

    No full text
    In this paper, we propose a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its individual network involvement based on its own energy resources and the information contained in each packet. The information content is ascertained through a system of rules describing prospective events in the sensed environment, and how important such events are. While the packets deemed most important are propagated by all sensor nodes, low importance packets are handled by only the nodes with high energy reserves. Results obtained from simulations depicting a wireless sensor network used to monitor pump temperature in an industrial environment have shown that a considerable increase in the network lifetime and network connectivity can be obtained. The results also show that when coupled with a form of energy harvesting, our technique can enable perpetual network operatio
    corecore