697 research outputs found

    Strategies for Increased Energy Awareness in Cloud Federations

    Get PDF
    This chapter first identifies three scenarios that current energy aware cloud solutions cannot handle as isolated IaaS, but their federative efforts offer opportunities to be explored. These scenarios are centered around: (i) multi-datacenter cloud operator, (ii) commercial cloud federations, (iii) academic cloud federations. Based on these scenarios, we identify energy-aware scheduling policies to be applied in the management solutions of cloud federations. Among others, these policies should consider the behavior of independent administrative domains, the frequently contradicting goals of the participating clouds and federation wide energy consumption

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Integrated Green Cloud Computing Architecture

    Full text link
    Arbitrary usage of cloud computing, either private or public, can lead to uneconomical energy consumption in data processing, storage and communication. Hence, green cloud computing solutions aim not only to save energy but also reduce operational costs and carbon footprints on the environment. In this paper, an Integrated Green Cloud Architecture (IGCA) is proposed that comprises of a client-oriented Green Cloud Middleware to assist managers in better overseeing and configuring their overall access to cloud services in the greenest or most energy-efficient way. Decision making, whether to use local machine processing, private or public clouds, is smartly handled by the middleware using predefined system specifications such as service level agreement (SLA), Quality of service (QoS), equipment specifications and job description provided by IT department. Analytical model is used to show the feasibility to achieve efficient energy consumption while choosing between local, private and public Cloud service provider (CSP).Comment: 6 pages, International Conference on Advanced Computer Science Applications and Technologies, ACSAT 201

    Energy Concerns with HPC Systems and Applications

    Full text link
    For various reasons including those related to climate changes, {\em energy} has become a critical concern in all relevant activities and technical designs. For the specific case of computer activities, the problem is exacerbated with the emergence and pervasiveness of the so called {\em intelligent devices}. From the application side, we point out the special topic of {\em Artificial Intelligence}, who clearly needs an efficient computing support in order to succeed in its purpose of being a {\em ubiquitous assistant}. There are mainly two contexts where {\em energy} is one of the top priority concerns: {\em embedded computing} and {\em supercomputing}. For the former, power consumption is critical because the amount of energy that is available for the devices is limited. For the latter, the heat dissipated is a serious source of failure and the financial cost related to energy is likely to be a significant part of the maintenance budget. On a single computer, the problem is commonly considered through the electrical power consumption. This paper, written in the form of a survey, we depict the landscape of energy concerns in computer activities, both from the hardware and the software standpoints.Comment: 20 page

    Verifiable Sustainability in Data Centers

    Full text link
    Sustainability is crucial for combating climate change and protecting our planet. While there are various systems that can pose a threat to sustainability, data centers are particularly significant due to their substantial energy consumption and environmental impact. Although data centers are becoming increasingly accountable to be sustainable, the current practice of reporting sustainability data is often mired with simple green-washing. To improve this status quo, users as well as regulators need to verify the data on the sustainability impact reported by data center operators. To do so, data centers must have appropriate infrastructures in place that provide the guarantee that the data on sustainability is collected, stored, aggregated, and converted to metrics in a secure, unforgeable, and privacy-preserving manner. Therefore, this paper first introduces the new security challenges related to such infrastructure, how it affects operators and users, and potential solutions and research directions for addressing the challenges for data centers and other industry segments

    A review of performance and energy aware improvement methods for future green cloud computing

    Get PDF
    With the advent of increased use of computers and computing power, state of the art of cloud computing has become imperative in the present-day global scenario. It has managed to remove the constraints in many organizations in terms of physical internetworking devices and human resources, leaving room for better growth of many organizations. With all these benefits, cloud computing is still facing a number of impediments in terms of energy consumption within data centers and performance degradation to end users. This has led many industries and researchers to find feasible solutions to the current problems. In the context of realizing the problems faced by cloud data centers and end users, this paper presents a summary of the work done, experimentation setup and the need for a greener cloud computing technique/algorithm which satisfies minimum energy consumption, minimum carbon emission and maximum quality of service

    ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments

    Get PDF
    Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and CO2CO_{2} emission amount of these models are evaluated and compared for the training and prediction phases
    • …
    corecore