3,898 research outputs found

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Phononics: Manipulating heat flow with electronic analogs and beyond

    Full text link
    The form of energy termed heat that typically derives from lattice vibrations, i.e. the phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, with this colloquium, we attempt to rebut this common view: By use of tailored models we demonstrate that phonons can be manipulated like electrons and photons can, thus enabling controlled heat transport. Moreover, we explain that phonons can be put to beneficial use to carry and process information. In a first part we present ways to control heat transport and how to process information for physical systems which are driven by a temperature bias. Particularly, we put forward the toolkit of familiar electronic analogs for exercising phononics; i.e. phononic devices which act as thermal diodes, thermal transistors, thermal logic gates and thermal memories, etc.. These concepts are then put to work to transport, control and rectify heat in physical realistic nanosystems by devising practical designs of hybrid nanostructures that permit the operation of functional phononic devices and, as well, report first experimental realizations. Next, we discuss yet richer possibilities to manipulate heat flow by use of time varying thermal bath temperatures or various other external fields. These give rise to a plenty of intriguing phononic nonequilibrium phenomena as for example the directed shuttling of heat, a geometrical phase induced heat pumping, or the phonon Hall effect, that all may find its way into operation with electronic analogs.Comment: 24 pages, 16 figures, modified title and revised, accepted for publication in Rev. Mod. Phy

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Wave scattering by discrete breathers

    Full text link
    We present a theoretical study of linear wave scattering in one-dimensional nonlinear lattices by intrinsic spatially localized dynamic excitations or discrete breathers. These states appear in various nonlinear systems and present a time-periodic localized scattering potential for plane waves. We consider the case of elastic one-channel scattering, when the frequencies of incoming and transmitted waves coincide, but the breather provides with additional spatially localized ac channels whose presence may lead to various interference patterns. The dependence of the transmission coefficient on the wave number q and the breather frequency Omega_b is studied for different types of breathers: acoustic and optical breathers, and rotobreathers. We identify several typical scattering setups where the internal time dependence of the breather is of crucial importance for the observed transmission properties.Comment: 17 pages, 19 figures, submitted to CHAOS (Focus Issue

    Wave propagation in a strongly disordered 1D phononic lattice supporting rotational waves

    Full text link
    We investigate the dynamical properties of a strongly disordered micropolar lattice made up of cubic block units. This phononic lattice model supports both transverse and rotational degrees of freedom hence its disordered variant posses an interesting problem as it can be used to model physically important systems like beam-like microstructures. Different kinds of single site excitations (momentum or displacement) on the two degrees of freedom are found to lead to different energy transport both superdiffusive and subdiffusive. We show that the energy spreading is facilitated both by the low frequency extended waves and a set of high frequency modes located at the edge of the upper branch of the periodic case for any initial condition. However, the second moment of the energy distribution strongly depends on the initial condition and it is slower than the underlying one dimensional harmonic lattice (with one degree of freedom). Finally, a limiting case of the micropolar lattice is studied where Anderson localization is found to persist and no energy spreading takes place
    corecore