408 research outputs found

    Pv-battery power supply for next-generation cellular telecommunication networks

    Get PDF

    Disaster Recovery Power and Communications for Smart Critical Infrastructures

    Get PDF
    In this paper, we propose a framework to leverage electrical microgrids and cellular networks to support post- disaster communications for the public, government and critical infrastructure operation. The framework involves both policy and technical components. The proposed approach is an integration of electrical microgrids to provide power together with self con- figuring wireless mesh communication networks and local edge computing infrastructure to support critical communications and smart infrastructure services/applications in a specific geographic area. Hence, geographic zones which are resilient safe havens are created in a city. We outline the basic components of our approach and discuss open challenges to realizing the visio

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Integrating renewable energy resources into the smart grid: recent developments in information and communication technologies

    Get PDF
    Rising energy costs, losses in the present-day electricity grid, risks from nuclear power generation, and global environmental changes are motivating a transformation of the conventional ways of generating electricity. Globally, there is a desire to rely more on renewable energy resources (RERs) for electricity generation. RERs reduce green house gas emissions and may have economic benefits, e.g., through applying demand side management with dynamic pricing so as to shift loads from fossil fuel-based generators to RERs. The electricity grid is presently evolving towards an intelligent grid, the so-called smart grid (SG). One of the major goals of the future SG is to move towards 100% electricity generation from RERs, i.e., towards a 100% renewable grid. However, the disparate, intermittent, and typically widely geographically distributed nature of RERs complicates the integration of RERs into the SG. Moreover, individual RERs have generally lower capacity than conventional fossil-fuel plants, and these RERs are based on a wide spectrum of different technologies. In this article, we give an overview of recent efforts that aim to integrate RERs into the SG. We outline the integration of RERs into the SG along with their supporting communication networks. We also discuss ongoing projects that seek to integrate RERs into the SG around the globe. Finally, we outline future research directions on integrating RERs into the SG
    • …
    corecore