1,837 research outputs found

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Multi-source in DF cooperative networks with the PSR protocol based full-duplex energy harvesting over a Rayleigh fading channel: performance analysis

    Get PDF
    Due to the tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques are important not only for theoretical research but also for saving operational costs and for a sustainable growth of wireless communications. In this paper, we investigate the multi-source in decode-and-forward cooperative networks with the power splitting protocol based full-duplex energy harvesting relaying network over a Rayleigh fading channel. In this system model, the multi-source and the destination communicate with each other by both the direct link and an intermediate helping relay. First, we investigate source selection for the best system performance. Then, the closed-form expression of the outage probability and the symbol error ratio are derived. Finally, the Monte Carlo simulation is used for validating the analytical expressions in connection with all main possible system parameters. The research results show that the analytical and simulation results matched well with each other.Web of Science68327526

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 103{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity

    Get PDF
    The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems. Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T, DVB-H and DAB systems that use Orthogonal Frequency Division Multplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies such as WiMAX and future 4G networks for delivery of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by simulation for different DVB-H and diversity parameters

    Energy-delay bounds analysis in wireless multi-hop networks with unreliable radio links

    Get PDF
    Energy efficiency and transmission delay are very important parameters for wireless multi-hop networks. Previous works that study energy efficiency and delay are based on the assumption of reliable links. However, the unreliability of the channel is inevitable in wireless multi-hop networks. This paper investigates the trade-off between the energy consumption and the end-to-end delay of multi-hop communications in a wireless network using an unreliable link model. It provides a closed form expression of the lower bound on the energy-delay trade-off for different channel models (AWGN, Raleigh flat fading and Nakagami block-fading) in a linear network. These analytical results are also verified in 2-dimensional Poisson networks using simulations. The main contribution of this work is the use of a probabilistic link model to define the energy efficiency of the system and capture the energy-delay trade-offs. Hence, it provides a more realistic lower bound on both the energy efficiency and the energy-delay trade-off since it does not restrict the study to the set of perfect links as proposed in earlier works
    corecore