2,013,247 research outputs found
AHCAL Energy Resolution
The CALICE collaboration has constructed highly granular hadronic and
electromagnetic calorimeter prototypes to evaluate technologies for the use in
detector systems at a future Linear Collider. The hadron calorimeter uses 7608
small scintillator cells individually read out with silicon photomultipliers.
This high granularity opens up the possibility for precise three dimensional
shower reconstruction and for software compensation techniques to improve the
energy resolution of the detector. We discuss the calibration procedure for the
analog hadronic calorimeter and present two software compensation methods based
on reconstructed clusters, which were developed with simulations and are
applied to hadronic test beam data.Comment: 5 pages, 8 figures, Linear Collider Workshop 2010 Conference
Proceeding
Atomic resolution mapping of phonon excitations in STEM-EELS experiments
Atomically resolved electron energy-loss spectroscopy experiments are
commonplace in modern aberrationcorrected transmission electron microscopes.
Energy resolution has also been increasing steadily with the continuous
improvement of electron monochromators. Electronic excitations however are
known to be delocalised due to the long range interaction of the charged
accelerated electrons with the electrons in a sample. This has made several
scientists question the value of combined high spatial and energy resolution
for mapping interband transitions and possibly phonon excitation in crystals.
In this paper we demonstrate experimentally that atomic resolution information
is indeed available at very low energy losses around 100 meV expressed as a
modulation of the broadening of the zero loss peak. Careful data analysis
allows us to get a glimpse of what are likely phonon excitations with both an
energy loss and gain part. These experiments confirm recent theoretical
predictions on the strong localisation of phonon excitations as opposed to
electronic excitations and show that a combination of atomic resolution and
recent developments in increased energy resolution will offer great benefit for
mapping phonon modes in real space
Improved energy resolution for VHE gamma-ray astronomy with systems of Cherenkov telescopes
We present analysis techniques to improve the energy resolution of
stereoscopic systems of imaging atmospheric Cherenkov telescopes, using the
HEGRA telescope system as an example. The techniques include (i) the
determination of the height of the shower maximum, which is then taken into
account in the energy determination, and (ii) the determination of the location
of the shower core with the additional constraint that the direction of the
gamma rays is known a priori. This constraint can be applied for gamma-ray
point sources, and results in a significant improvement in the localization of
the shower core, which translates into better energy resolution. Combining both
techniques, the HEGRA telescopes reach an energy resolution between 9% and 12%,
over the entire energy range from 1 TeV to almost 100 TeV. Options for further
improvements of the energy resolution are discussed.Comment: 13 Pages, 7 figures, Latex. Astroparticle Physics, in pres
Measurement of the energy resolution and calibration of hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip
This paper describes an iterative method of per-pixel energy calibration of
hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip. A
convolution of precisely measured spectra of characteristic X-rays of different
metals with the resolution and the efficiency of the pixel detector is used for
the calibration. The energy resolution of the detector is also measured during
the calibration. The use of per-pixel calibration allows to achieve a good
energy resolution of the Timepix detector with GaAs:Cr sensor: 8% and 13% at 60
keV and 20 keV, respectively
- …
