3,635 research outputs found

    Hybrid NOMA-TDMA for Multiple Access Channels with Non-Ideal Batteries and Circuit Cost

    Full text link
    We consider a multiple-access channel where the users are powered from batteries having non-negligible internal resistance. When power is drawn from the battery, a variable fraction of the power, which is a function of the power drawn from the battery, is lost across the internal resistance. Hence, the power delivered to the load is less than the power drawn from the battery. The users consume a constant power for the circuit operation during transmission but do not consume any power when not transmitting. In this setting, we obtain the maximum sum-rates and achievable rate regions under various cases. We show that, unlike in the ideal battery case, the TDMA (time-division multiple access) strategy, wherein the users transmit orthogonally in time, may not always achieve the maximum sum-rate when the internal resistance is non-zero. The users may need to adopt a hybrid NOMA-TDMA strategy which combines the features of NOMA (non-orthogonal multiple access) and TDMA, wherein a set of users are allocated fixed time windows for orthogonal single-user and non-orthogonal joint transmissions, respectively. We also numerically show that the maximum achievable rate regions in NOMA and TDMA strategies are contained within the maximum achievable rate region of the hybrid NOMA-TDMA strategy

    Thermoelectric energy harvester with a cold start of 0.6 °C

    Get PDF
    This paper presents the electrical and thermal design of a thermoelectric energy harvester power system and its characterisation. The energy harvester is powered by a single Thermoelectric Generator (TEG) of 449 couples connected via a power conditioning circuit to an embedded processor. The aim of the work presented in this paper is to experimentally confirm the lowest ΔT measured across the TEG (ΔTTEG) at which the embedded processor operates to allow for wireless communication. The results show that when a temperature difference of 0.6 °CΔTTEG is applied across the thermoelectric module, an input voltage of 23 mV is generated which is sufficient to activate the energy harvester in approximately 3 minutes. An experimental setup able to accurately maintain and measure very low temperatures is described and the electrical power generated by the TEG at these temperatures is also described. It was found that the energy harvester power system can deliver up to 30 mA of current at 2.2 V in 3ms pulses for over a second. This is sufficient for wireless broadcast, communication and powering of other sensor devices. The successful operation of the wireless harvester at such low temperature gradients offers many new application areas for the system, including those powered by environmental sources and body heat

    A two-step hybrid approach for modeling the nonlinear dynamic response of piezoelectric energy harvesters

    Get PDF
    An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE) analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior

    Multiple-input multiple-output energy processing for energy-harvesting applications

    Get PDF
    This project belongs to energy harvesting field, which is a method of collecting energy from the environment to power small devices. This type of energy use is growing exponentially due to the appearance of many of these devices (sensors, wearables...). The objective of this project is to design and implement an ultra-low-power boost converter, designed for energy harvesting applications, which is able to add different types of energy coming from the environment to charge a battery or to feed another electronic device. It is a very innovative project and therefore, the methodology used has contemplated a lot of time for studying, doing simulations, optimizing and testing a prototype. This has allowed us to carry out a study of great value and usefulness which establishes the basis to construct a device that adds energies of our surroundings. Finally, to verify the feasibility of the application, a two-input boost converter is built to add energy coming from two different sources (with the possibility of expanding this number) and also offers different types of output storage elements. In conclusion, the work has confirmed the possibility of adding energy from our environment and has shown the great potential of the application studied through a functional prototype

    Energy harvesting towards self-powered iot devices

    Get PDF
    The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system's life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article

    Radio frequency energy harvesting for autonomous systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyRadio Frequency Energy Harvesting (RFEH) is a technology which enables wireless power delivery to multiple devices from a single energy source. The main components of this technology are the antenna and the rectifying circuitry that converts the RF signal into DC power. The devices which are using Radio Frequency (RF) power may be integrated into Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), biomedical implants, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), smart meters, telemetry systems and may even be used to charge mobile phones. Aside from autonomous systems such as WSNs and RFID, the multi-billion portable electronics market – from GSM phones to MP3 players – would be an attractive application for RF energy harvesting if the power requirements are met. To investigate the potential for ambient RFEH, several RF site surveys were conducted around London. Using the results from these surveys, various harvesters were designed and tested for different frequency bands from the RF sources with the highest power density within the Medium Wave (MW), ultra- and super-high (UHF and SHF) frequency spectrum. Prototypes were fabricated and tested for each of the bands and proved that a large urban area around Brookmans park radio centre is suitable location for harvesting ambient RF energy. Although the RFEH offers very good efficiency performance, if a single antenna is considered, the maximum power delivered is generally not enough to power all the elements of an autonomous system. In this thesis we present techniques for optimising the power efficiency of the RFEH device under demanding conditions such as ultra-low power densities, arbitrary polarisation and diverse load impedances. Subsequently, an energy harvesting ferrite rod rectenna is designed to power up a wireless sensor and its transmitter, generating dedicated Medium Wave (MW) signals in an indoor environment. Harvested power management, application scenarios and practical results are also presented

    Energy harvesting for marine based sensors

    Get PDF
    This work examines powering marine based sensors (MBSs) by harvesting energy from their local environment. MBSs intrinsically operate in remote locations, traditionally requiring expensive maintenance expeditions for battery replacement and data download. Nowadays, modern wireless communication allows real-time data access, but adds a significant energy drain, necessitating frequent battery replacement. Harvesting renewable energy to recharge the MBSs battery, introduces the possibility of autonomous MBS operation, reducing maintenance costs and increasing their applicability. The thesis seeks to answer if an unobtrusive energy harvesting device can be incorporated into the MBS deployment to generate 1 Watt of average power. Two candidate renewable energy resources are identified for investigation, ocean waves and the thermal gradient across the air/water interface. Wave energy conversion has drawn considerable research in recent years, due to the large consistent energy flux of ocean waves compared to other conventional energy sources such as solar or wind, but focussing on large scale systems permanently deployed at sites targeted for their favourable wave climates. Although a small amount of research exists on using wave energy for distributed power generation, the device sizes and power outputs of these systems are still one to two orders of magnitude larger than that targeted in this thesis. The present work aims for an unobtrusive device that is easily deployable/retrievable with a mass less than 50kg and which can function at any deployment location regardless of the local wave climate. Additionally, this research differs from previous work, by also seeking to minimise the wave induced pitch motion of the MBS buoy, which negatively affects the data transmission of the MBS due to tilting and misalignment of the RF antenna. Thermal energy harvesting has previously been investigated for terrestrial based sensors, utilising the temperature difference between the soil and ambient air. In this thesis, the temperature difference between the water and ambient air is utilised, to present the first investigation of this thermal energy harvesting concept in the marine environment. A prototype wave energy converter (WEC) was proposed, consisting of a heaving cylindrical buoy with an internal permanent magnet linear generator. A mathematical model of the prototype WEC is derived by coupling a hydrodynamic model for the motion of the buoy with a vibration energy harvester model for the generator. The wave energy resource is assessed, using established mathematical descriptions of ocean wave spectra and by analysing measured wave data from the coast of Queensland, resulting in characteristic wave spectra that are input to the mathematical model of the WEC. The parameters of the WEC system are optimised, to maximise the power output while minimising the pitch motion. A prototype thermal energy harvesting device is proposed, consisting of a thermoelectric device sandwiched between airside and waterside heat exchangers. A mathematical model is derived to assess the power output of the thermal energy harvester using different environmental datasets as input. A physical prototype is built and a number of experiments performed to assess its performance. The results indicate that the prototype WEC should target the high frequency tail of ocean wave spectra, diverging from traditional philosophy of larger scale WECs which target the peak frequency of the input wave spectrum. The analysis showed that the prototype WEC was unable to provide the required power output whilst remaining below 100kg and obeying a 40 degrees pitch angle constraint to ensure robust data transmission. However, a proposed modification to the WECs cylindrical geometry, to improve its hydrodynamic coupling to the input waves, was shown to enable the WEC to provide the required 1W output power whilst obeying the pitch constraints and having a mass below 50kg. The thermal energy harvester results reveal that the thermal gradient across the air/water interface alone is not a suitable energy resource, requiring a device with a cross-sectional area in excess of 100m² to power a MBS. However, including a solar thermal energy collector to increase the airside temperature, greatly improves the performance and enables a thermal energy harvester with a cross-sectional area on the order of 1m² to provide 1W of output power. The findings in this thesis suggest that a well hydrodynamically designed buoy can provide two major benefits for a MBS deployment: enabling efficient wave energy absorption by the MBS buoy, and minimising the wave induced pitch motion which negatively affects the data transmission
    • …
    corecore