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An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric
energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element
(FE) analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then
derived,where the global dynamic response is formulated in the state-space using lumped coefficients enrichedwith the information
derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by
means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results.
Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and
geometrical parameters on the global nonlinear response.The advantage of the presented approach is that the overall computational
and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.

1. Introduction

The possibility of using electronic devices that do not require
periodic replacement of batteries is nowadays themajor chal-
lenge in several engineering fields. In particular, vibration-
based piezoelectric energy harvesting devices are emerging as
a valid technological option to powerminiaturized electronic
sensors in civil structural health monitoring applications [1–
3]. It can be easily understood, therefore, that the implemen-
tation of an efficient computational framework for the anal-
ysis and design of these devices is of paramount importance
in order to foster the future large-scale applications of this
technology.

In this perspective, the electromechanical response of
piezoelectric devices can be assessed through different
numerical and analytical techniques, for example, reduced-
ordermodels, finite element (FE)models, and circuit analogy
methods [2, 4–9]. Most of the efforts in this field are based

on the hypothesis of linear behavior [10–14], but nonlinear
phenomena can greatly impact the final performances [15–
18].The causes of the nonlinear response can be traced back to
several mechanisms, such as instability phenomena [19–22],
nonlinearmaterial constitutive law [23–27], geometric effects
[28–30], impacts [31–34], and damping [35]. Additionally,
nonlinearities can arise from the electrical circuit (diodes,
among others) [36].

As regards the applications in civil engineering, the
dynamic response of most structures and infrastructures is
characterized by low frequency content. In these cases, the
frequency tuning of piezoelectric beams necessitates the use
of flexible materials, low thickness-to-length ratios, and/or
relatively heavy additional masses [37, 38]. Such expedients
make piezoelectric energy harvesting devices more prone to
exhibit nonlinear mechanical behaviors.

While FE simulations can be a viable computational
strategy for nonlinear static analyses, reduced-order models
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(ROMs) are more attractive for nonlinear dynamic analyses
because they allow saving elaboration time. Moreover, ROMs
are useful in order to separate and identify the effects due
to material and geometric nonlinearities [35]. With some
exceptions [5], however, most reduced-order models assume
a linear electromechanical response and the modal super-
position principle is extensively adopted to derive the state-
space representation of the system.

Therefore, in this paper, we propose an efficientmultiscale
hybrid approach to model accurately the nonlinear dynamic
response of PVDF energy harvesters. The term multiscale
refers specifically to the device and system scales. First, the
FE method is employed to solve the equations governing
the response under static loading (device scale). Hence, a
global curve that provides the tip displacement evolution
for increasing values of the external load is obtained (i.e.,
pushover curve). The global FE-based solutions are then
used in place of experimental data to identify the values
of linear and nonlinear lumped coefficients of the reduced-
order model (system scale). Finally, the nonlinear differential
equations governing the dynamic behavior are solved to esti-
mate the frequency response functions of tip displacement
and output voltage.

2. Numerical Modeling

2.1. A Short Review on Nonlinear Electroelasticity. Piezoelec-
tric polymers like PVDF [39] represent a valid solution for
the development of flexible energy harvesting devices [2,
40]. The main advantage of PVDF with respect to other
piezoelectric materials (in particular piezoceramics) is the
possibility of sustaining large displacement without failure
or drastic reduction of the piezoelectric efficiency [41–43].
Throughout this paper, therefore, it will be assumed that the
piezoelectric layers are made of PVDF.

As soon as a piezoelectric solid undergoes large defor-
mations and rotations, the classical small strain electrome-
chanical constitutive equations lead to incorrect results. For
the sake of completeness, we briefly review hereafter the
equations for the continuum mechanical description of a
piezoelectric solid under large strains. The interested reader
can refer to [44] for a more complete discussion.

The reference and deformed configurations are denoted
by B and S, respectively, where B,S ⊂ R3. When the
electromechanical body deforms, the nonlinear mapping
function 𝜑 : B → S at time instant 𝑡 maps the material
point X ∈ B onto x ∈ S:

x = 𝜑 (X, 𝑡) . (1)

The displacement vector u is obtained as the difference
between the positions vectors of the current and initial
configuration:

u (X, 𝑡) = 𝜑 (X, 𝑡) − X, (2)

whereas the deformation gradient F can be defined as a
function of the displacement gradientH:

F = grad 𝜑 (X, 𝑡) = 𝜕x𝜕X = 1 +H, (3)

where

H = grad u. (4)

According to Faraday’s law,

curl 󳨀⇀e = 0, (5)

where 󳨀⇀e is the electric field vector in the current configura-
tion. Consequently, it is possible to define 󳨀⇀e as the gradient
of a scalar electric potential 𝜙:

󳨀⇀e = −grad 𝜙 = −𝜕𝜙𝜕x . (6)

Velocity and acceleration of a material point with respect to
the reference configuration are defined, respectively, by the
following material time derivatives:

V (X, 𝑡) = 𝜑̇ (X, 𝑡) ,
A (X, 𝑡) = 𝜑̈ (X, 𝑡) = V̇ (X, 𝑡) . (7)

In the current configuration, the balance of momentum and
Gauss’s law state that

div 𝜎 + 𝜌𝑚,VbV = 𝜌𝑚,VA,
div

󳨀⇀
d = 󰜚𝑒,V, (8)

where 𝜎 represents the mechanical Cauchy stress tensor,
󳨀⇀
d

denotes the electric displacement, 𝜌𝑚,V is the mechanical
density, 󰜚𝑒,V is free electric charge density, and 𝜌𝑚,VbV indicates
the volume force (in the current configuration). The balance
of mass implies that 𝜌𝑚,V = 𝜌𝑚,𝑉/𝐽𝐹, where 𝜌𝑚,𝑉 is the density
in the initial configuration and 𝐽𝐹 = det F. Local balance of
angular momentum guarantees that 𝜎 = 𝜎𝑇. Moreover, if 󳨀⇀p
is the electric polarization vector in the current configuration
and 𝜖0 is the vacuum permittivity, then

󳨀⇀
d = 𝜖0󳨀⇀e + 󳨀⇀p . (9)

The transformation between volume elements 𝑑V, 𝑑𝑉 and
electric charges 󰜚𝑒,V, 󰜚𝑒,𝑉 in the current and reference config-
urations, respectively, is based on the following equations:

󰜚𝑒,V = 󰜚𝑒,𝑉𝐽𝐹 ,
𝑑V = 𝐽𝐹𝑑𝑉.

(10)

Furthermore, the condition 𝐽𝐹 ̸= 0 ensures that the tensor F is
not singular and, as a consequence, the deformation process
will be smooth.

In the initial configuration, the local balance of momen-
tum given by (8) can be recast with respect to different stress
and strain measures:

div P + 𝜌𝑚,𝑉b𝑉 = 𝜌𝑚,𝑉A,
div FS + 𝜌𝑚,𝑉b𝑉 = 𝜌𝑚,𝑉A, (11)
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where P and S are the total first and second Piola–Kirchoff
stress tensors, respectively. Moreover, 𝜌𝑚,𝑉b𝑉 represents the
body force in the initial configuration. Constitutive equations
satisfying the material objectivity principle are also required.
To this end, it is assumed that a strain energy density function𝜓 exists for the electromechanical body that, in general,
can be defined with respect to different kinematics tensors,
namely, F, E, and C and the electric field vector 󳨀→E . All the
quantities refer to the initial configuration. Here, E indicates
the Green–Lagrange strain tensor that can be expressed as a
function of the deformation gradient tensor F by

E = 12 (FF𝑇 − I) = C − I2 , (12)

where

C = F𝑇F (13)

is the right Cauchy–Green tensor. Objectivity requires that
𝜓̃(F, 󳨀→E ) obj= 𝜓(C, 󳨀→E ) = 𝜓(E, 󳨀→E ). A compressible Neo–
Hookean type material model with a total energy density𝜓(C, 󳨀→E ) is used in this work:

𝜓(C, 󳨀→E) = 𝜇 {12 [I1 − 3] − ln (𝐽𝐹)} + 𝜆2 ln (𝐽𝐹)2
+C1I4 +C2I5,

(14)

where 𝜆 and 𝜇 are the Lame constants,C1 andC2 are further
material constants to be calibrated, and I1, I4, and I5 are
computed for a transversely isotropic material according to
[45, 46] and they are equal to

I1 = C : I = Tr [C] ,
I4 = [󳨀→E ⊗ 󳨀→E] : I = Tr [󳨀→E ⊗ 󳨀→E] ,
I5 = [󳨀→E ⊗ 󳨀→E] : C = Tr [C󳨀→E ⊗ 󳨀→E] ,

(15)

where I is the identity tensor. In this study, it is assumed that
the interaction between electric fields and matter is mainly
confined within the finite space occupied by thematter. Once𝜓 is defined, it is possible to derive the following constitutive
equations:

S = 𝜕𝜓𝜕E = 2𝜕𝜓𝜕C ,
󳨀⇀D = − 𝜕𝜓𝜕󳨀⇀E . (16)

Here,󳨀⇀D is the dielectric displacement vector computed in the
initial configuration while the total first Piola–Kirchoff stress
tensor and the total Cauchy stress tensor are equal to

P = FS,
𝜎 = FSF𝑇𝐽𝐹 , (17)

respectively. The transformation from the material to the
current configuration is possible by means of the following
relationships:

󳨀⇀e = F−𝑇󳨀⇀E ,
󳨀⇀
d = F󳨀⇀D𝐽𝐹 .

(18)

The Dirichlet and Neumann boundary conditions for the
mechanical field are

u = u on Γ𝑢
t = P ⋅ N = t on Γ𝑡, (19)

where u and t are prescribed mechanical displacement
and surface traction vectors in the reference configuration,
respectively. The boundary of the domain is Γ (Γ𝑢 and Γ𝑡 are
its Dirichlet and Neumann portions, resp.), with Γ = Γ𝑢 ∪ Γ𝑡
and Γ𝑢 ∩Γ𝑡 = ⊘. Moreover,N is the outward unit normal to Γ.
The boundary conditions for the electric field are

𝜙 = 𝜙 on Γ𝜙,
󳨀→
d = 󳨀→D ⋅N = 󳨀→

d on Γ󳨀→d ,
(20)

where 𝜙 and
󳨀→
d are prescribed values of electric potential onΓ𝜙 and electric charge flux on Γ󳨀→d , respectively. Moreover, Γ =Γ𝜙 ∪ Γ󳨀→d , Γ𝜙 ∩ Γ󳨀→d = ⊘.

A cantilever-type configuration is here assumed for the
energy harvesting device (see Figure 1). It is made of a piezo-
electric layer and a substrate layer used for the deposition
of the polymeric mixture during the fabrication process
before the polarization of dipoles. This second material layer
is described here by a compressible Neo–Hookean type
material with total energy densities 𝜓(F):
𝜓 (F) = 12𝜆 (𝐽𝐹 − 1)2 + 𝜇(12 (Tr [C] − 3) − ln (𝐽𝐹)) . (21)

2.2. Finite Element Discretization for Static Problems. The
standard nodal FE discretization is employed following [46,
47]. In doing so, the advanced symbolic computational tools
for FE analysis available in the AceGen/AceFEM are useful
to facilitate the full automation of the linearization process.
Therefore, let u = ∑𝑁𝑖û𝑖 and 𝜙 = ∑𝑁𝑖𝜙𝑖 be the discretized
displacement and electric potential fields, respectively, where
û𝑖 are the nodal displacements and 𝜙𝑖 are the nodal electric
potentials (𝑁𝑖 are the shape functions). According to [47],
since all quantities in (14) and (21) depend on the displace-
ment field and the electric potential, the resulting system of
nonlinear equations has the general form of R(p) = 0, where
the unknown variables p ∈ R𝑛tp have to be determined (𝑛tp
is the total number of global unknowns of the problem). If
p𝑒 ⊂ p is a subset of the global vector of unknowns p on
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Figure 1: Schematic representation of the unimorph electromechanical generator with a piezoelectric layer made of PVDF.

which the 𝑒th element depends explicitly, then the elementR𝑒
and the Gauss point R𝑔 contributions to the global residuals
R are explicit functions of p𝑒, that is, R𝑒(p𝑒) and R𝑔(p𝑒). In
particular, at the element level, the internal residuals R𝑒 are
obtained using AceGen as follows [47]:

R𝑒 = 𝜕𝜕p𝑒 (∫𝑉 𝜓 (p𝑒) 𝑑𝑉) = 0, (22)

where p𝑒 is the unknown vector related to the element that
collects all nodal displacements û𝑖 and/or nodal electrical
potentials 𝜙𝑖. Within the FE procedure, the global residuals
R are approximated as

R ≈ 𝑛𝑒⋀
𝑒=1

R𝑒 = 𝑛𝑒⋀
𝑒=1

𝑛𝑔∑
𝑔=1

𝑤𝑔𝐽𝑔R𝑔 = 0, (23)

where⋀ is the standard FE assembly operator, 𝑛𝑒 indicates the
number of elements, 𝑛𝑔 is the number of Gauss points, and𝑔 indicates a generic Gauss point (𝑤𝑔 and 𝐽𝑔 are the Gauss
point weight and Jacobian determinant, resp.). The Gauss
point contribution to the residuals is R𝑔 = 𝛿𝜓(p𝑒)/𝛿p𝑒.

The requirement of zero global residuals R(p) yields
a set of nonlinear systems of equations, which is solved
numerically by means of a Newton–Raphson algorithm. The
system of equations R(p) = 0 is parameterized, introducing a
load factor Λ in the form R(p, Λ) = 0. Thus, it is considered
as [47]

R (p, Λ) = Rint (p) − ΛRref = 0, (24)

where Rint denotes the contribution of internal forces to
the nodal force vector and Rref is the reference load vector
associated with the pattern of the applied nodal forces and/or
electrical charges. Taylor series expansion of (24) at the
(known) state p(𝜄) results in the expression

R (p(𝜄) + Δp(𝜄)) = R (p(𝜄)) + DR (p(𝜄)) ⋅ Δp(𝜄)
+ r (p(𝜄)) , (25)

where the upper index (𝜄) denotes the quantities at the 𝜄
iteration and Δp(𝜄) = p(𝜄) − p(𝜄−1), whereas D indicates
the directional derivative required for the linearization. In
particular, the linearization of the vector R(p) yields the
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tangentmatrixK = K(𝜄) = DR(p(𝜄)).Within the FEprocedure,
the tangent operator K ≈ ⋀𝑛𝑒𝑒=1K𝑒 = ⋀𝑛𝑒𝑒=1∑𝑛𝑔𝑔=1 𝑤𝑔K𝑔 is
formed from the Gauss point tangent operator K𝑔:

K𝑔 = (𝛿R𝑔𝛿p𝑒 ) . (26)

2.3. Finite Element Discretization for Dynamic Problems. For
our applications, it is useful to separate residual and stiffness
matrix terms that refer to the mechanical and electrical
unknowns û𝑖 and 𝜙𝑖. To this end, the total energy of the
discretized system Π is introduced as a function of two
contributions: the first term is 𝜓em(C, 󳨀⇀E ) and refers to the
electromechanical domain whereas the second term is 𝜓𝑚(F)
and refers to the mechanical domain. Thus,

Π = ⋃(𝜓em (C, 󳨀⇀E) + 𝜓𝑚 (F)) . (27)

Consequently, the following equations are derived:

R𝑢𝑖 = 𝛿Π𝛿û𝑖 ,
𝑅𝜙𝑖 = 𝛿Π𝛿𝜙𝑖 ,

K𝑢𝑢𝑖𝑗 = 𝛿R𝑢𝑖𝛿û𝑗 ,
K𝜙𝜙𝑖𝑗 = 𝛿𝑅𝜙𝑖𝛿𝜙𝑗 ,
K𝑢𝜙𝑖𝑗 = 𝛿R𝑢𝑖𝛿𝜙𝑗 ,
K𝜙𝑢𝑖𝑗 = 𝛿𝑅𝜙𝑖𝛿û𝑗 .

(28)

Using an implicit time integration scheme and Newton’s
method iterations to determine the dynamic equilibrium at
time 𝑡 + Δ𝑡, the coupled nonlinear FE equations are

[M𝑡+Δ𝑡𝑢𝑢 0
0 0

](ü(𝜄)
𝑑

𝜙̈
(𝜄)
) + [C𝑡+Δ𝑡𝑢𝑢 0

0 0
](u̇(𝜄)
𝑑

𝜙̇
(𝜄)
)

+ [K𝑡𝑢𝑢 K𝑡𝑢𝜙
K𝑡𝜙𝑢 −K𝑡𝜙𝜙](

Δu(𝜄)
𝑑Δ𝜙(𝜄)) = [

[
(f𝑡+Δ𝑡𝑢 )(𝜄−1)
(f𝑡+Δ𝑡𝜙 )(𝜄−1)]] ,

(29)

where u𝑑 and 𝜙 are the global time-dependent nodal dis-
placement vector and electric potential vector, respectively,
whereas Δ indicates the time step increment. The upper
dots indicate the time derivative. The matrices M𝑢𝑢, C𝑢𝑢,
and K𝑢𝑢 are the structural mass, damping, and stiffness

matrices, respectively. The matrices K𝑢𝜙 and K𝜙𝑢 are the
stiffness matrices due to piezoelectric mechanical coupling.
The matrix K𝜙𝜙 is the stiffness matrix resulting from the
electrical fields. The vectors f𝑢 and f𝜙 are the unbalanced
force vectors due to mechanical and electrical contributions,
respectively. According to the classical Rayleigh damping
approach, amass- and stiffness-proportional dampingmatrix
C𝑢𝑢 is considered:

C𝑢𝑢 = 𝜒M𝑢𝑢 + 𝛽K𝑢𝑢, (30)

where 𝜒 and 𝛽 are constant multipliers that can be deter-
mined by assuming a constant damping ratio 𝜁.
2.4. Reduced-Order Modeling. Reduced-order models allow
mitigating the computational efforts required for FE-based
dynamic analyses. According to [8, 48], the forced vibrations
of linear elastic piezoelectric cantilever generators can be
defined using the modal coordinates 𝜂𝑟 as follows:

̈𝜂𝑟 + 2𝜁𝑟𝜔𝑟 ̇𝜂𝑟 + 𝜔2𝑟𝜂𝑟 − 𝜃𝑟𝜐 = 𝑓𝑟,
𝐶eq
𝑝 ̇𝜐 + 𝜐𝑅𝐿 +

∞∑
𝑟=1

𝜏𝑟 ̇𝜂𝑟 = 0, (31)

for each mode 𝑟, where 𝜁𝑟 is the modal mechanical damping
ratio, 𝜔𝑟 is the undamped natural frequency, 𝜃𝑟 and 𝜏𝑟 are
modal electromechanical coupling terms, 𝑓𝑟 is the modal
mechanical forcing function, 𝐶eq

𝑝 is the capacitance, 𝑅𝐿 is
the load resistance, and 𝜐 is the voltage response across
the external resistive load. Having calculated the modal
coordinates 𝜂𝑟(𝑡), the transverse displacement of the neutral
axis 𝑢(𝜉, 𝑡) relative to themoving base at position 𝜉 = 𝑥/𝐿 and
time 𝑡 is equal to

𝑢 (𝜉, 𝑡) = ∞∑
𝑟=1

𝜙𝑟 (𝜉) 𝜂𝑟 (𝑡) , (32)

where 𝜙𝑟(𝜉) is a mass normalized eigenfunction (mode
shape). Different analytical expressions can be derived for
each lumped coefficient depending on the considered system
(series or parallel connection of the piezoelectric layers, uni-
morph or bimorph layout, etc.). Using Hamilton’s principle
and Galerkin’s method, Stanton et al. [49] extended the
formulation [8] to the case of nonlinear piezoelectricity.

In this paper, we will focus on the numerical compu-
tations of the electromechanical response for piezoelectric
unimorphs that exploit a nonlinear behavior to increase
their bandwidth. In particular, following [49] and assuming
a linear damping, the single-mode approximation for the
piezoelectric cantilever in Figure 1 under base acceleration
reads

̈𝜂 + 2𝜁𝜔 ̇𝜂 + 𝜔2𝜂 + 𝛼𝜂3 − (𝜃 + 𝜑𝜂2) 𝜐 = T𝑛𝑧̈𝑔, (33)

𝐶eq
𝑝 ̇𝜐 + 𝜐𝑅𝐿 + (𝜏 + 𝜅𝜂2) ̇𝜂 = 0, (34)
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where 𝛼, 𝜑, and 𝜅 are nonlinear coefficients that can be
determined based on the orthogonal basis functions used
to represent in the modal space the transverse deflection
of the device, whereas T𝑛 is the modal mechanical forcing
function coefficient that multiplies the base acceleration 𝑧̈𝑔.
Based on experimental evidence [17], it has been shown
that the nonlinear response mainly depends on mechanical
stiffening/softening effects; therefore, we will assume that
both 𝜑 and 𝜅 are equal to zero in the following computations.
Moreover, for a rectangular cross section, 𝜃 = 𝜏, whereas the
equivalent capacitance is

𝐶eq
𝑝 = 𝜖33𝐵𝐿𝑇PVDF , (35)

where 𝐵, 𝐿, and 𝑇PVDF are the width, length, and thick-
ness of the piezoelectric layer, respectively, whereas 𝜖33 is
the permittivity constant. The 𝑟th modal electromechanical
coupling term for unimorph configuration can be obtained
as [48]

𝜃𝑟 = 𝐸PVDF𝑑31𝐵 (2ℎ𝑏 + 𝑇PVDF) 𝜙󸀠𝑟 (𝐿)2 , (36)

where 𝑑31 is the piezoelectric constant and ℎ𝑏 is the position
of the bottom PVDF layer from the neutral axis. It is
understood that 𝜃𝑟=1 = 𝜃 in (33). Following [48], ℎ𝑏 = ℎpa −𝑇PVDF, where ℎpa is the distance from the top of the PVDF
layer to the neutral axis, and it is equal to

ℎpa = 𝑇2PVDF + 2ℵ𝑇mylar𝑇PVDF + ℵ𝑇2PVDF2 (𝑇mylar + ℵ𝑇PVDF) , (37)

with ℵ = 𝐸mylar/𝐸PVDF, where 𝐸mylar and 𝐸PVDF are the
elastic modulus of the substrate (here assumed to be made
of mylar, without loss of generality) and that of the PVDF
layer, respectively.Moreover,𝑇mylar is the thickness of the sub-
strate.

3. Hybrid Computational Strategy

The solution of nonlinear dynamic equilibrium equations
using mode superposition techniques was first studied in
[50] and implemented successfully in [51] for mechanical
problems. A review of reduced-order model techniques
is reported in [52], including a description of the modal
coordinate reduction. The use of modal derivatives for non-
linear model order reduction has been recently proposed
in [53] in the context of isogeometric FE analysis. To the
authors’ knowledge, few studies describe efficient numerical
procedures for reduced-order model techniques and coupled
domains (such as in electromechanical systems). The most
important contributions are provided in [54, 55], whose
strategy is implemented in [56].

In this framework, a hybrid multiscale computational
approach is proposed here for modeling efficiently the non-

linear dynamic response of piezoelectric cantilever devices
(see Figure 2). It is based on two steps. Specifically, we
first solve (24) in the physical domain of the piezoelectric
cantilever (device scale) using the FE method. In doing so,
a pattern of forces (𝐹𝑧) is statically applied to the structural
model (including nonlinear effects) and the total reaction 𝑅𝑧
at the base is plotted against a reference displacement (i.e.,
the tip displacement 𝛿tip). This allows obtaining the capacity
curve (also named pushover curve) of the device. This curve
essentially allows reducing the nonlinear static problem at
the device scale to an equivalent single degree of freedom
(SDOF) system. The second step of the analysis consists in
the derivation of a phenomenological law for the nonlinear
stiffness from the estimated capacity curve. Hence, the goal is
to compute the coefficients of a nonlinear spring suitable for
reduced-order modeling. With reference to (33), these coeffi-
cients are 𝛼𝐷 = 𝛼𝑚 and 𝜅𝐷 = 𝜔2𝑚, where𝑚 is the equivalent
mass. Looking at (33), it is clear that the effects ofmaterial and
geometrical nonlinearities are merged in a single coefficient𝛼. This assumption is meaningful for flexible PVDF EHs. In
fact, the material nonlinear constitutive equations, derived
from the potentials introduced in (14) and (21), allow for
catching large deformations and, consequently, geometrical
stiffening or softening effects.Therefore, it appears reasonable
to consider the two sources of nonlinearity as coupled in
the reduced-order model. For each case, the coefficient 𝛼𝐷
is evaluated by fitting the analytical approximation with the
pushover curves. The obtained values are used to update the
equations set (33)-(34), which is the form of the ordinary
differential equations system that describes the dynamics
of the piezoelectric energy harvester. Several patterns of
forces have to be considered for a multimodal response
analysis. Finally, the nonlinear state-space model equation
is solved using a standard time discretization algorithm.
This numerical strategy is implemented in Mathematica
using the advanced symbolic computational tools available
in the AceGen/AceFEM [47]. Plane-stress four-node large-
displacement electromechanical elements with three degrees
of freedom for node are implemented in AceGen/AceFEM.
Analytical expressions can be also derived for harmonic base
vibrations (see the Appendix).

4. Applications

4.1. Numerical Data. Energy harvesters similar to those
tested by Elvin et al. [1, 17] are considered here. As shown
in Figure 1(a), the harvester consists of a PVDF film with
electrodes on both sides connected with wires to output the
generated charge. Moreover, there are coatings to protect
the device from damage. The thickness of the PVDF layer
is 28𝜇m, and the piezoelectric strain constant is 𝑑31 =23 ⋅ 10−12 pC/N. According to Figure 1(a), five layers are
considered in the real configuration of the device, namely, (i)
a mylar substrate with a thickness equal to 6𝜇m, (ii) a silver
layer with a thickness equal to 8 𝜇m, (iii) a central layer of
PVDF with a thickness equal to 28𝜇m, (iv) another silver
layer with a thickness equal to 8 𝜇m, and (v) a final layer of
mylar with a thickness equal to 140 𝜇m. Density and Young’s
modulus of PVDF andmylar are provided in Table 1, together
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Figure 2: Implemented hybrid computational strategy.

with the othermainmaterial and geometrical data adopted in
this numerical study.

4.2. Thickness and Stiffness Homogenization. According to
[12], we use the multimorph structure concept to physically
and mathematically describe the equivalent stiffness of the
piezoelectric energy harvester. A fixed-free cantilever con-
figuration is assumed. Moreover, each multiple thin material
film layer has length 𝐿, width 𝐵, and thickness 𝑇𝑠. It is
assumed that the thin-film layer interfaces are smooth and
continuous and do not slip with respect to each other.
Each layer is considered uniform with Young’s modulus 𝐸𝑠,
rotational inertia 𝐼𝑠, and cross-sectional areas𝐴 𝑠 = 𝐵 ⋅𝑇𝑠. The
subscript 𝑠 denotes the 𝑠th layer. The first four modal shapes
and modal frequencies of this device have been calculated

(see Figure 3). The homogenized flexural rigidity about the
neutral axis located at 𝑧𝑁 is then given by [12]

𝐸𝐼 = 𝑁layer∑
𝑠=1

{𝐴 𝑠𝐸𝑠 [(𝑧𝑠 − 𝑧𝑁)2 + 𝑇𝑠212 ]} , (38)

where

𝑧𝑁 = ∑𝑁layer𝑠=1 𝐸𝑠𝑇𝑠𝑧𝑠∑𝑁layer𝑠=1 𝐸𝑠𝑇𝑠 (39)

and 𝑧𝑠 is the location of the axis of the 𝑠th layer with
respect to an arbitrary reference. 𝑁layer is the number of
layers considered (5 for our device). The homogenized
stiffness 𝐸𝐼 is given in Table 1. Since a lumped tip mass is
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(a) (b)

(c) (d)

Figure 3: First four modal shapes and modal frequencies of the considered piezoelectric device: (a) 𝜔1 = 316 rad/sec, (b) 𝜔2 = 1980 rad/sec,
(c) 𝜔3 = 5545 rad/sec, and (d) 𝜔4 = 10866 rad/sec.

Table 1: Material and geometrical data used in the numerical study.

Property Symbol Value
Elastic modulus of the piezoelectric film 𝐸PVDF 3.0GPa
Elastic modulus of the substrate 𝐸mylar 3.79GPa
Poisson ratio of the piezoelectric film ]PVDF 0.3
Poisson ratio of the substrate ]mylar 0.35
Damping ratio 𝜁 4.0%
Density of the piezoelectric film 𝜌PVDF 1780 kg/m3

Density of the substrate 𝜌mylar 1390 kg/m3

Lumped tip mass 𝑀lump 0.032 g
Piezoelectric coupling coefficient 𝑑31 23 ⋅ 10−12 pC/N
Electrical permittivity 𝜖33 106𝑒 −12 F/m
Unimorph length 𝐿 31.7mm
Unimorph width 𝐵 16.0mm
Circuit resistance 𝑅𝐿 10MΩ
Thickness of the piezoelectric film 𝑇PVDF 28 𝜇m
Homogenized stiffness 𝐸𝐼 37.7Nmm2

Equivalent mylar layer thickness 𝑇eq
mylar 172𝜇m

assumed, it is observed that modal truncation to the first
mode is enough to describe the overall device response.
For broadband energy harvesting and/or for piezoelectric
beams with different boundary constraints, however, several
modes can be required. Moreover, it is not necessary in
the present work to use FE discretization for each material
layer. In fact, an equivalent mylar layer thickness 𝑇eq

mylar is
determined in such a way that the first resonance frequency
predicted using the FE method and that obtained by means
of homogenized stiffness given by (38) are close to each
other. The equivalent mylar layer thickness 𝑇eq

mylar is given in
Table 1 (see Figure 1(b)). Although each layer can bemodeled
explicitly in the FE model, the use of an equivalent layer
is useful to reduce the total elaboration time in nonlinear
analyses because of the more refined mesh required by
thin layers, as well as prevent distortion phenomena of the
elements at the interface between layers having different
thicknesses.

4.3. Capacity Curve. According to the proposed hybrid com-
putational strategy, a FE analysis is first performed in order
to derive the capacity curve of the device. The adopted FE

L/20

T０６＄＆

T
？Ｋ
ＧＳＦ；Ｌ

Figure 4: Details of the FE mesh discretization.
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Figure 5: Vertical tip deflection of the cantilever unimorph: com-
parison between FE solutions and experimental data.

mesh is illustrated in Figure 4. Open-circuit conditions
are assumed. Figure 5 compares the results of the large-
displacement analysis (performed bymeans ofAceFEM)with
the experimental evidence provided in [17]. Herein, it can
be noted that the vertical tip displacements are normalized
by the beam length 𝐿 while the load 𝐹𝑧 is normalized
by 𝐿2/(𝐸𝐼), where 𝐸𝐼 is the homogenized stiffness coeffi-
cient. This comparison demonstrates a very good agreement
between numerical predictions and experimental outcomes.
The computer program Comsol Multiphysics is also used to
further validate the results obtained with the developed FE
codes. Finally, contour levels of the stress components 𝜎𝑦𝑦
and deformed shape are shown in Figure 6.

4.4. Calibration of the Analytical Model. The second step
of the proposed hybrid computational procedure aims at
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deriving a phenomenological law for the nonlinear stiffness
from the estimated capacity curve. FE analyses allow for
evaluating the total reaction at the device clamped end (𝑅𝑧)
as a function of the tip displacement (𝛿tip). This facilitates
the calibration of the nonlinear spring-type element of the

reduced-order model. Hence, the capacity curve is now
approximated using the analytical Duffing model by means
of the relationship

𝑅𝑧 = 𝜅𝐷𝛿tip + 𝛼𝐷𝛿3tip, (40)
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Figure 8: FE-based capacity curves: parametric analysis.

where 𝜅𝐷 and 𝛼𝐷 characterize the constitutive law of the
nonlinear spring. In the static case, 𝜅𝐷 = 3𝐸𝐼/𝐿3. Figure 7
provides the comparison between the FE analysis and the
approximation obtained by means of the analytical Duffing
model.

4.5. Nonlinear Frequency Response Functions. The influence
of material and geometrical parameters on the nonlinear
frequency response of the device is now investigated. To this
end, four different values of 𝐸PVDF, 𝐸mylar, 𝑇PVDF, and 𝑇mylar
are considered in the nonlinear static analysis. For each case,

the capacity curves are obtained and these global FE solutions
are used in place of experimental curves to identify the values
of the linear and nonlinear lumped parameters.The resulting
nonlinear dynamic equation system in (33) and (34) is solved
in the frequency domain (see the Appendix). In particular,
the frequency response functions (FRFs) of tip displacement
and voltage through a resistance 𝑅𝐿 = 10MΩ are determined
for four values of 𝐸PVDF, 𝐸mylar, 𝑇PVDF, and 𝑇mylar. The
reference values for 𝐸PVDF, 𝐸mylar, 𝑇PVDF, and 𝑇mylar are those
listed in Table 1 and are indicated as 𝐸0PVDF, 𝐸0mylar, 𝑇0PVDF,
and 𝑇0mylar, respectively, throughout this parametric study.
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Figure 9: FRFs of the maximum tip displacement for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝐸PVDF = 𝐸0PVDF, (b)𝐸PVDF = 1.2𝐸0PVDF, (c) 𝐸PVDF = 1.4𝐸0PVDF, and (d) 𝐸PVDF = 1.6𝐸0PVDF.

Figure 8 provides the capacity curves obtained through the
nonlinear FE analyses while Table 2 reports the computed
values of the nonlinear stiffness coefficients 𝛼𝐷 for each
case.

Figures 9 and 10 highlight the role of the piezoelectric
elasticmodulus𝐸PVDF whereas that of the substrate𝐸mylar can
be inferred from Figures 11 and 12.The effects of the thickness
layers are illustrated in Figures 13, 14, 15, and 16. Overall, it
can be observed that the occurrence of geometric stiffening
effects induces a significant variation of the frequency at
which the device exhibits the maximum tip displacement
and output voltage. For instance, as shown in Figure 9
for the original device configuration (case a), the peak
displacement is achieved at 316 rad/s for small deformations
(amplitude of the base excitation equal to or less than 1𝑎𝑔,
with 𝑎𝑔 = 9.8m/s2). For very large deformations (intensity

of the base excitation equal to 10𝑎𝑔), the peak displacement
is achieved at 350 rad/s. In such a case, an increment of
the elastic modulus up to 60% shifts this frequency to
420 rad/s.

5. Validation

5.1. Experimental Layout and Analysis. The proposed
approach is further validated against new experimental
data. The tested piezoelectric energy harvester is shown in
Figure 1(a) (the corresponding data are given in Table 1).
The adopted experimental testing equipment (see Figure 17)
consists of a signal generator (exciter) that provides a
controlled input voltage to the piezoelectric structure and an
analysis system with tools for signal processing and modal
characterization. Modal data (i.e., natural frequencies and
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Figure 10: FRFs of the maximum voltage for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝐸PVDF = 𝐸0PVDF, (b) 𝐸PVDF =
1.2𝐸0PVDF, (c) 𝐸PVDF = 1.4𝐸0PVDF, and (d) 𝐸PVDF = 1.6𝐸0PVDF.

Table 2: Computation of 𝛼𝐷 coefficients [10−6N/mm3].

{𝐸0mylar[%]} → 𝛼𝐷 {𝐸0PVDF[%]} → 𝛼𝐷 {𝑇0mylar[%]} → 𝛼𝐷 {𝑇0PVDF[%]} → 𝛼𝐷{50} → 6.0 {120} → 7.5 {80} → 4.0 {50} → 5.5{100} → 8.5 {100} → 8.5 {100} → 8.5 {100} → 8.5{150} → 8.5 {140} → 8.0 {90} → 5.5 {120} → 6.5{200} → 8.5 {160} → 8.5 {120} → 11.0 {140} → 8.0
damping ratios) are extracted based on the SDOF curve
fitting of the FRF. Experimental modal shapes are derived
considering the receptance matrixH𝑢𝑢(𝜔):

H𝑢𝑢 (𝜔) = (K𝑢𝑢 − 𝜔2M𝑢𝑢 + 𝜄C𝑢𝑢𝜔)−1 . (41)

Here, 𝜄 indicates the imaginary unit. Using the mode super-
position technique, it is possible to express H𝑢𝑢(𝜔) in the
form

H𝑢𝑢 (𝜔) = 𝑛𝑟𝑚∑
𝑟=1

[ Υ𝑟Υ
𝑇
𝑟(𝜔2𝑟 − 𝜔2) + 𝜄 (2𝜁𝑟𝜔𝑟)] , (42)
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Figure 11: FRFs of the maximum tip displacement for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝐸mylar = 𝐸0mylar, (b)𝐸mylar = 0.5𝐸0mylar, (c) 𝐸mylar = 1.5𝐸0mylar, and (d) 𝐸mylar = 2.0𝐸0mylar.

where the SRth element of the matrixH𝑢𝑢 is obtained from
the measured transfer function between points S andR. Υ𝑟
indicates experimental modal shapes.

The frequency response analysis is performed by eval-
uating the out-of-plane displacements of the piezoelectric
cantilevers by a noncontact measurement system. An AC
voltage signal generated by a signal generator embedded into
the vibrometer system has been applied to the cantilever,
thus resulting in the actuation and deflection of the tip. The
cantilever is tested assuming a frequency sweep at a given
voltage in order to measure the peak of the tip deflection.The
measured first resonance frequency and damping ratio are
324 rad/sec and 4%, respectively (see Figure 18). Moreover,
two base acceleration time histories are considered for the
experimental characterization of the device response under
large strains. In particular, the input acceleration values are

measured directly by the LDV system, by focusing the laser
beam on the fixed part of the cantilever. The harmonic
dynamic inputs have amplitude equal to 3.7𝑎𝑔 and 10.5𝑎𝑔
while the frequency is 330 rad/sec. The FFTs of the input
acceleration are provided in Figures 19(a) and 19(b) while the
corresponding FFTs (see Figures 19(c) and 19(d)) and time
histories of the output voltage (see Figures 19(e) and 19(f))
are measured through a resistance 𝑅𝐿 = 1MΩ.
5.2. Comparison between Experimental Data and Numerical
Predictions. The validation of the proposed hybrid compu-
tational strategy is now performed by means of a direct
comparison between the predicted and the measured output
voltage in the time domain. After estimating the value of
the nonlinear term 𝛼 through the comparison between the
reduced-order model and the static solution of (24), (33) and
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Figure 12: FRFs of the maximum voltage for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝐸mylar = 𝐸0mylar, (b) 𝐸mylar =
0.5𝐸0mylar, (c) 𝐸mylar = 1.5𝐸0mylar, and (d) 𝐸mylar = 2.0𝐸0mylar.

(34) are solved using a Runge–Kutta algorithm. Finally, the
numerical time histories of tip displacement and/or velocity
and voltage difference on the resistance 𝑅𝐿 are computed.
Figures 19(e) and 19(f) provide the comparison between
experimental data and predicted values of the voltage dif-
ference in the time domain for an amplitude of the base
acceleration equal to 3.7𝑎𝑔 and 10.5𝑎𝑔. We can observe a
good agreement between experimental evidence and numer-
ical simulations, as confirmed by the results in Table 3.
Consequently (as pointed out in the Appendix), based on
experimental evidence, it is thus confirmed for PVDF EHs
that a harmonic form can be assumed for tip displacement
and output voltage in case of harmonic base acceleration, and
the corresponding amplitudes have a nonlinear dependence
with respect to the frequency of the input signal.

Table 3: Experimental versus numerical results.

Experimental voltage peak [V] Numerical voltage peak [V]
3.7𝑎𝑔 5.2 5.2
10.5𝑎𝑔 10.3 10.1

6. Conclusion

An innovativemultiscale hybrid approach has been proposed
to model accurately the nonlinear dynamic response of
piezoelectric cantilever beams. Once the tip displacements
are obtained as a function of the load increments by means
of static nonlinear FE analyses, linear and nonlinear lumped



Shock and Vibration 15

Frequency (rad/s)

Ti
p 

di
sp

la
ce

m
en

t (
m

m
)

16

14

12

10

8

6

4

2

0
150 200 250 300 350 400 450

10ag
5ag
2ag

1ag

500

(a)

Frequency (rad/s)

Ti
p 

di
sp

la
ce

m
en

t (
m

m
)

16

14

12

10

8

6

4

2

0
150 200 250 300 350 400 450

10ag
5ag
2ag

1ag

500

(b)

Frequency (rad/s)

Ti
p 

di
sp

la
ce

m
en

t (
m

m
)

16

14

12

10

8

6

4

2

0
150 200 250 300 350 400 450 500

10ag
5ag
2ag

1ag

(c)

Frequency (rad/s)

Ti
p 

di
sp

la
ce

m
en

t (
m

m
)

16

14

12

10

8

6

4

2

0
150 200 250 300 350 400 450

10ag
5ag
2ag

1ag

500

(d)

Figure 13: FRFs of the maximum tip displacement for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝑇PVDF = 𝑇0PVDF, (b)𝑇PVDF = 0.5𝑇0PVDF, (c) 𝑇PVDF = 1.2𝑇0PVDF, and (d) 𝑇PVDF = 1.4𝑇0PVDF.

coefficients of the spring element into the analytical Duffing
model are calibrated in such away so as to approximate as best
as possible the reference nonlinear capacity curve. Finally,
the nonlinear dynamic differential equations governing the
response of the piezoelectric cantilever beam can be solved
in order to estimate the frequency response functions of tip
displacement and output voltage. The attractive features of
this computational procedure are twofold. From a numerical
standpoint, the FE analysis is performed to solve a static
problem, which is less time-consuming than a dynamic
problem. Since the nonlinear behavior is reflected into the
reduced-order model adopted for the dynamic analyses,
through the comparison with FE-based capacity curves,
devices with a larger bandwidth and better performances

in the frequency range of interest can be fabricated. The
experimental work was limited to the estimation of damping
and natural frequencies of the device without nonlinear
effects in order to predict the electrical response in the
time domain. A large parametric investigation has been also
performed in order to assess the role of material and geomet-
rical parameters in the nonlinear response of piezoelectric
unimorphs for energy harvesting applications. Final results
have shown that the proposed hybrid approach leads to
satisfactory results while reducing the overall numerical and
experimental efforts. Future work will concern the further
validation of the proposed numerical procedure with the aim
of identifying experimentally the nonlinear coefficients and
the overall FRFs.
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Figure 14: FRFs of the maximum voltage for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝑇PVDF = 𝑇0PVDF, (b) 𝑇PVDF =0.5𝑇0PVDF, (c) 𝑇PVDF = 1.2𝑇0PVDF, and (d) 𝑇PVDF = 1.4𝑇0PVDF.

Appendix

Let us consider (33) and (34) under the hypothesis of
sinusoidal external acceleration acting at the base with
amplitude 𝐹𝑏, frequency 𝜔𝐹, and phase 𝜙𝐹. Moreover, based
on experimental evidence (see Figure 18), let us assume that
the electrical contribution to themechanical equation is small
enough to be neglected. For the single-mode approximation,
(33) and (34) reduce to

̈𝜂 (𝑡) = −2𝜁𝜔 ̇𝜂 (𝑡) − 𝜔2𝜂 (𝑡) − 𝛼𝜂 (𝑡)3
+ 𝐹𝑏 cos (𝜔𝐹𝑡 + 𝜙𝐹) ,

𝐶eq
𝑝 ̇𝜐 + 𝜐𝑅𝐿 + 𝜃 ̇𝜂 = 0.

(A.1)

The solution of the first equation is well established [57]
and it allows correlating the amplitude of the tip oscillation

𝐴 tip with the amplitude of the external acceleration 𝐹𝑏 as a
function of 𝜔 and 𝜔𝐹:

{[(𝜔2 − 𝜔2𝐹)𝐴 tip + 34𝛼𝐴3tip]
2 + [2𝜁𝜔𝐹𝐴 tip]2}1/2

= 𝐹𝑏.
(A.2)

According to [57], provided that the following inequality is
verified:

𝛼𝐴 tip
2

36𝜔𝐹2 ≪ 1, (A.3)

the tip oscillation can be well approximated by a harmonic
signal in the form 𝜂(𝑡) ≈ 𝐴 tip cos(𝜔𝐹𝑡). It is worth stressing
that 𝐴 tip(𝜔𝐹) is a nonlinear function of the input excitation
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Figure 15: FRFs of the maximum tip displacement for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝑇mylar = 𝑇0mylar, (b)𝑇mylar = 0.8𝑇0mylar, (c) 𝑇mylar = 0.9𝑇0mylar, and (d) 𝑇mylar = 1.2𝑇0mylar.

frequency 𝜔𝐹. Therefore, the second equation can be recast
in the form

̇𝜐 + 1𝑅𝐿𝐶eq
𝑝

𝜐 = −𝜃𝐴 tip𝐶eq
𝑝

𝑑𝑑𝑡 [cos (𝜔𝐹𝑡)] . (A.4)

The steady-state solution of (A.4) is given by

𝜐 (𝑡) = Re {𝑉𝑒𝜄𝜔𝐹𝑡} = 󵄨󵄨󵄨󵄨󵄨𝑉󵄨󵄨󵄨󵄨󵄨 cos (𝜔𝐹𝑡 + ∠𝑉) , (A.5)

where 𝑉 is a complex quantity expressed as follows:

𝑉 = − 𝜔𝐹𝜃𝐴 tip

𝐶eq
𝑝 [𝜔𝐹2 + 1/ (𝑅𝐿𝐶eq

𝑝 )2] (𝜔𝐹 + 𝜄
1𝑅𝐿𝐶eq
𝑝

) . (A.6)

Therefore, the steady-state amplitude𝐴V of the output voltage
can be computed as

𝐴V (𝜔𝐹) = 󵄨󵄨󵄨󵄨󵄨𝑉󵄨󵄨󵄨󵄨󵄨 = 𝜔𝐹𝜃𝐴 tip (𝜔𝐹)
𝐶eq
𝑝
√𝜔2𝐹 + 1/ (𝑅𝐿𝐶eq

𝑝 )2
. (A.7)
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Figure 16: FRFs of the maximum voltage for base acceleration amplitudes ranging from 1𝑎𝑔 to 10𝑎𝑔, where (a) 𝑇mylar = 𝑇0mylar, (b) 𝑇mylar =0.8𝑇0mylar, (c) 𝑇mylar = 0.9𝑇0mylar, and (d) 𝑇mylar = 1.2𝑇0mylar.
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