12,259 research outputs found

    Resource Allocation Energy Efficient Algorithm for H-CRAN in 5G

    Get PDF
    In today's generation, the demand for data rates has also increased due to the rapid surge in the number of users. With this increasing growth, there is a need to develop the next fifth generation network keeping in mind the need to replace the current 4G cellular network. The fifth generation (5G) design in mobile communication technology has been developed keeping in mind all the communication needs of the users. Heterogeneous Cloud Radio Access Network (H-CRAN) has emerged as a capable architecture for the newly emerging network infrastructure for energy efficient networks and high data rate enablement. It is considered as the main technology. Better service quality has been achieved by developing small cells into macro cells through this type of network. In addition, the reuse of radio resources is much better than that of homogeneous networks. In the present paper, we propose the H-CRAN energy-efficient methods. This energy-efficient algorithm incorporates an energy efficient resource allocation management design to deal to heterogeneous cloud radio access networks in 5G. System throughput fulfillment is elevating by incorporating an efficient resource allocation design by the energy consumption model. The simulation results have been demonstrated by comparing the efficiency of the introduced design with the existing related design

    Cross Layer Resource Allocation in H-CRAN with Spectrum and Energy Cooperation

    Full text link
    5G and beyond wireless networks are the upcoming evolution for the current cellular networks to provide the essential requirement of future demands such as high data rate, low energy consumption, and low latency to provide seamless communication for the emerging applications. Heterogeneous cloud radio access network (H-CRAN) is envisioned as a new trend of 5G that uses the advantages of heterogeneous and cloud radio access networks to enhance both the spectral and energy efficiency. In this paper, building on the notion of effective capacity (EC), we propose a framework in non-orthogonal multiple access (NOMA)-based H-CRAN to meet these demands simultaneously. Our proposed approach is to maximize the effective energy efficiency (EEE) while considering spectrum and power cooperation between macro base station (MBS) and radio remote heads (RRHs). To solve the formulated problem and to make it more tractable, we transform the original problem into an equivalent subtractive form via Dinkelbach algorithm. Afterwards, the combinational framework of distributed stable matching and successive convex algorithm (SCA) is then adopted to obtain the solution of the equivalent problem. Hereby, we propose an efficient resource allocation scheme to maximize energy efficiency while maintaining the delay quality of service (QoS) requirements for the all users. The simulation results show that the proposed algorithm can provide a non-trivial trade-off between delay and energy efficiency in NOMA H-CRAN systems in terms of EC and EEE and the spectrum and power cooperation improves EEE of the proposed network. Moreover, our proposed solution complexity is much lower than the optimal solution and it suffers a very limited gap compared to the optimal method

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
    • …
    corecore