685 research outputs found

    Resource Allocation Energy Efficient Algorithm for H-CRAN in 5G

    Get PDF
    In today's generation, the demand for data rates has also increased due to the rapid surge in the number of users. With this increasing growth, there is a need to develop the next fifth generation network keeping in mind the need to replace the current 4G cellular network. The fifth generation (5G) design in mobile communication technology has been developed keeping in mind all the communication needs of the users. Heterogeneous Cloud Radio Access Network (H-CRAN) has emerged as a capable architecture for the newly emerging network infrastructure for energy efficient networks and high data rate enablement. It is considered as the main technology. Better service quality has been achieved by developing small cells into macro cells through this type of network. In addition, the reuse of radio resources is much better than that of homogeneous networks. In the present paper, we propose the H-CRAN energy-efficient methods. This energy-efficient algorithm incorporates an energy efficient resource allocation management design to deal to heterogeneous cloud radio access networks in 5G. System throughput fulfillment is elevating by incorporating an efficient resource allocation design by the energy consumption model. The simulation results have been demonstrated by comparing the efficiency of the introduced design with the existing related design

    Resource management with adaptive capacity in C-RAN

    Get PDF
    This work was supported in part by the Spanish ministry of science through the projectRTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by theUPC. It has been done under COST CA15104 IRACON EU project.Efficient computational resource management in 5G Cloud Radio Access Network (CRAN) environments is a challenging problem because it has to account simultaneously for throughput, latency, power efficiency, and optimization tradeoffs. This work proposes the use of a modified and improved version of the realistic Vienna Scenario that was defined in COST action IC1004, to test two different scale C-RAN deployments. First, a large-scale analysis with 628 Macro-cells (Mcells) and 221 Small-cells (Scells) is used to test different algorithms oriented to optimize the network deployment by minimizing delays, balancing the load among the Base Band Unit (BBU) pools, or clustering the Remote Radio Heads (RRH) efficiently to maximize the multiplexing gain. After planning, real-time resource allocation strategies with Quality of Service (QoS) constraints should be optimized as well. To do so, a realistic small-scale scenario for the metropolitan area is defined by modeling the individual time-variant traffic patterns of 7000 users (UEs) connected to different services. The distribution of resources among UEs and BBUs is optimized by algorithms, based on a realistic calculation of the UEs Signal to Interference and Noise Ratios (SINRs), that account for the required computational capacity per cell, the QoS constraints and the service priorities. However, the assumption of a fixed computational capacity at the BBU pools may result in underutilized or oversubscribed resources, thus affecting the overall QoS. As resources are virtualized at the BBU pools, they could be dynamically instantiated according to the required computational capacity (RCC). For this reason, a new strategy for Dynamic Resource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML) techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: support vector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higher than the predicted computational capacity (PCC). For this reason, two new strategies are proposed and tested: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting (DRM-AC-ES), reducing the average of unsatisfied resources by 99.9 % and 98 % compared to the DRM-AC, respectively

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Dynamic network slicing for multitenant heterogeneous cloud radio access networks

    Get PDF
    Multitenant cellular network slicing has been gaining huge interest recently. However, it is not well-explored under the heterogeneous cloud radio access network (H-CRAN) architecture. This paper proposes a dynamic network slicing scheme for multitenant H-CRANs, which takes into account tenants' priority, baseband resources, fronthaul and backhaul capacities, quality of service (QoS) and interference. The framework of the network slicing scheme consists of an upper-level, which manages admission control, user association and baseband resource allocation; and a lower-level, which performs radio resource allocation among users. Simulation results show that the proposed scheme can achieve a higher network throughput, fairness and QoS performance compared to several baseline schemes
    • …
    corecore