250,718 research outputs found

    Energy Efficient Cloud Networks

    Get PDF
    Cloud computing is expected to be a major factor that will dominate the future Internet service model. This paper summarizes our work on energy efficiency for cloud networks. We develop a framework for studying the energy efficiency of four cloud services in IP over WDM networks: cloud content delivery, storage as a service (StaaS), and virtual machines (VMS) placement for processing applications and infrastructure as a service (IaaS).Our approach is based on the co-optimization of both external network related factors such as whether to geographically centralize or distribute the clouds, the influence of users’ demand distribution, content popularity, access frequency and renewable energy availability and internal capability factors such as the number of servers, switches and routers as well as the amount of storage demanded in each cloud. Our investigation of the different energy efficient approaches is backed with Mixed Integer Linear Programming (MILP) models and real time heuristic

    Energy Efficient Tapered Data Networks for Big Data Processing in IP/WDM Networks

    Get PDF
    Classically the data produced by Big Data applications is transferred through the access and core networks to be processed in data centers where the resulting data is stored. In this work we investigate improving the energy efficiency of transporting Big Data by processing the data in processing nodes of limited processing and storage capacity along its journey through the core network to the data center. The amount of data transported over the core network will be significantly reduced each time the data is processed therefore we refer to such a network as an Energy Efficient Tapered Data Network. The results of a Mixed Integer linear Programming (MILP), developed to optimize the processing of Big Data in the Energy Efficient Tapered Data Networks, show significant reduction in network power consumption up to 76%

    Energy Efficient virtualization framework for 5G F-RAN

    Get PDF
    Fog radio access network (F-RAN) and virtualisation are promising technologies for 5G networks. In F-RAN, the fog and cloud computing are integrated where the conventional C-RAN functions are diverged to the edge devices of radio access networks. F-RAN is adopted to mitigate the burden of front-haul and improve the end to end (E2E) latency. On other hand, virtualization and network function virtualization (NFV) are IT techniques that aim to convert the functions from hardware to software based functions. Many merits could be brought by the employment of NFV in mobile networks including a high degree of reliability, flexibility and energy efficiency. In this paper, a virtualization framework is introduced for F-RAN to improve the energy efficiency in 5G networks. In this framework, a gigabit passive optical network (GPON) is leveraged as a backbone network for the proposed F-RAN architecture where it connects several evolved nodes B (eNodeBs) via fibre cables. The energy-efficiency of the proposed F-RAN architecture has been investigated and compared with the conventional C-RAN architecture in two different scenarios using mixed integer linear programming (MILP) models. The MILP results indicate that on average a 30% power saving can be achieved by the F-RAN architecture compared with the C-RAN architecture

    WDM/TDM over Passive Optical Networks with Cascaded-AWGRs for Data Centers

    Full text link
    Data centers based on Passive Optical Networks (PONs) can provide high capacity, low cost, scalability, elasticity and high energy-efficiency. This paper introduces the use of WDM-TDM multiple access in a PON-based data center that offers multipath routing via two-tier cascaded Arrayed Waveguide Grating Routers (AWGRs) to improve the utilization of resources. A Mixed Integer Linear Programming (MILP) model is developed to optimize resource allocation while considering multipath routing. The results show that all-to-all connectivity is achieved in the architecture through the use of two different wavelength within different time slots for the communication between racks in the same or different cells, as well as with the OLT switches
    • …
    corecore